Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mikrochim Acta ; 191(4): 221, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38536529

ABSTRACT

The successful fabrication is reported of highly crystalline Co nanoparticles interconnected with zeolitic imidazolate framework (ZIF-12) -based amorphous porous carbon using the molten-salt-assisted approach utilizing NaCl. Single crystal diffractometers (XRD), and X-ray photoelectron spectroscopy (XPS) analyses confirm the codoped amorphous carbon structure. Crystallite size was calculated by Scherrer (34 nm) and Williamson-Hall models (42 nm). The magnetic properties of NPCS (N-doped porous carbon sheet) were studied using a vibrating sample magnetometer (VSM). The NPCS has a magnetic saturation (Ms) value of 1.85 emu/g. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses show that Co/Co3O4 nanoparticles are homogeneously distributed in the carbon matrix. While a low melting point eutectic salt acts as an ionic liquid solvent, ZIF-12, at high temperature, leading cobalt nanoparticles with a trace amount of Co3O4 interconnected by conductive amorphous carbon. In addition, the surface area (89.04 m2/g) and pore architectures of amorphous carbon embedded with Co nanoparticles are created using the molten salt approach. Thanks to this inexpensive and effective method, the optimal composite porous carbon structures were obtained with the strategy using NaCl salt and showed distinct electrochemical performance on electrochemical methodology revealing the analytical profile of Erdatifinib (ERD) as a sensor modifier. The linear response spanned from 0.01 to 7.38 µM, featuring a limit of detection (LOD) of 3.36 nM and a limit of quantification (LOQ) of 11.2 nM. The developed sensor was examined in terms of selectivity, repeatability, and reproducibility. The fabricated electrode was utilized for the quantification of Erdafitinib in urine samples and pharmaceutical dosage forms. This research provides a fresh outlook on the advancements in electrochemical sensor technology concerning the development and detection of anticancer drugs within the realms of medicine and pharmacology.


Subject(s)
Antineoplastic Agents , Cobalt , Oxides , Pyrazoles , Quinoxalines , Sodium Chloride , Reproducibility of Results , Carbon/chemistry
2.
Nanoscale ; 14(44): 16602-16610, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36317494

ABSTRACT

Non-covalent functionalization of single wall carbon nanotubes (SWCNTs) has been conducted using several binding agents with surface π-interaction forces in recent studies. Herein, we present the first example of non-covalent functionalization of sidewalls of SWCNTs using thienothiophene (TT) derivatives without requiring any binding agents. Synthesized TT derivatives, TT-CN-TPA, TT-CN-TPA2 and TT-COOH-TPA, were attached directly to SWCNTs through non-covalent interactions to obtain new TT-based SWCNT hybrids, HYBRID 1-3. Taking advantage of the presence of sulfur atoms in the structure of TT, HYBRID 1, as a representative, was treated with Au nanoparticles for the adsorption of Au by sulfur atoms, which generated clear TEM images of the particles. The images indicated the attachment of TTs to the surface of SWCNTs. Thus, the presence of sulfur atoms in TT units made the binding of TTs to SWCNTs observable via TEM analysis through adsorption of Au nanoparticles by the sulfur atoms. Surface interactions between TTs and SWCNTs of the new hybrids were also clarified by classical molecular dynamic simulations, a quantum mechanical study, and SEM, TEM, AFM and contact angle (CA) analyses. The minimum distance between a TT and a SWCNT reached up to 3.5 Å, identified with strong peaks on a radial distribution function (RDF), while maximum interaction energies were raised to -316.89 kcal mol-1, which were determined using density functional theory (DFT).

3.
Int J Biol Macromol ; 217: 562-571, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-35839957

ABSTRACT

Two types of MgAl layered double hydroxide nanoparticles, MgAl LDH, at Mg:Al ratio of 2:1 and 3:1were prepared and used as inorganic fillers to improve the mechanical properties of poly(lactic acid)/poly(ethylene oxide) (PLA/PEO) electrospun composite fibers. Their detailed structural characterization was performed using X-ray diffraction (XRD) and transmission electron spectroscopy (TEM) techniques. Spectroscopic, thermal, mechanical, and morphological properties of the electrospun composite fibers, and cell proliferation on their surface, were examined. XRD and TEM analyses showed that the LDH nanoparticles were 50 nm in size and the Mg:Al ratio did not affect the average spacing between crystal layers. Fourier transform infrared (FTIR) and thermal analyses (TA) revealed the compatibility of the filler and the polymer matrix. The nanoparticles considerably improved the mechanical properties of the electrospun mats. The tensile strength and elongation at break values of the composite samples increased from 0.22 MPA to 0.40 MPa and 12.2 % to 45.66 %, respectively, resulting from the interaction between LDH and the polymer matrix. Scanning electron microscopy (SEM) and MTT analyses demonstrated that the electrospun composite fibers supported the SaOS-2 cells attachment and proliferation on the fiber surfaces, along with their suitable cytocompatibility.


Subject(s)
Nanoparticles , Polyethylene Glycols , Aluminum , Ethylene Oxide , Hydroxides , Magnesium , Nanoparticles/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry
4.
ACS Appl Mater Interfaces ; 14(1): 891-899, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34967603

ABSTRACT

In this study, we report a new design paradigm for an electrode preparation method that drastically improves the fast-charging capabilities of a graphite (Gt) anode by controlling the crystallographic orientation. The crystallographic orientation of the Gt electrode is achieved under a dynamic magnetic field using commercially available neodymium magnets. When the slurry of the Gt electrode is tape casted using the conventional method with no magnetic field, the crystallographic orientation is dominated with (002) planes along with other random planes. However, once the slurry of the Gt electrode is casted and dried under a magnetic field, the Gt particles tend to orient themselves along the (100), (101), and (110) planes which are all aligned vertically to the current collector. This striking difference allows the oriented Gt electrode to reach 80% state of the charge in only 50 min at 1C charge rate, whereas the randomly distributed Gt electrode reaches 80% state of the charge in 138 min at 1C charge rate using a constant current-constant voltage charging protocol. The outstanding electrochemical performance of the oriented Gt electrodes was characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, electrochemical cycling, and electrochemical impedance spectroscopy techniques.

5.
Turk J Chem ; 46(1): 59-85, 2022.
Article in English | MEDLINE | ID: mdl-38143892

ABSTRACT

Increasing interest in green chemistry has led scientists to an environmentally friendly nanoparticle synthesis approach that has many advantages, such as simple, affordable and versatility for a wide range of commercial production. In this study, green synthesis of zinc oxide nanoparticles (ZnO NPs), which is widely researched in the field of nanotechnology, was performed under different conditions (volume ratio of CC flower extract to Zn(CH3COO)2 solution, time, pH and temperature) using the aqueous extract of Amarant (Celosia cristata L., CC, cockscome) plant flowers. Produced ZnO NPs were characterized by UV-Vis absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR), high-resolution transmission electron microscopy (HR-TEM) and scanning electron microscopy (SEM) analysis. The characteristic absorption peak seen at λmax: 364 nm in the UV-Vis absorption spectrum and the band seen at 381 cm-1 in the FTIR spectrum indicate that ZnO NPs were synthesized. TEM image also confirmed the formation of nanoparticles. The average size of nanoparticles is approximately 22-27 nm and the shape of the ZnO NPs as nearly spherical. The effect of different calcination temperatures (100, 200, 300, 400, and 500 °C) on the size of ZnO NPs was investigated and it was observed that the particle size decreased as the calcination temperature increased. ZnO NPs were also used as photo catalyst for removal of basic yellow28 (BY28) and basic violet39 (BV39) dyestuffs which are used in textile industry and ecologically toxic. The decolorization efficiency was found 95%-100% and 62% respectively when the BV39 and BY28 dyestuffs were exposed to UV light for 160 min. Antibacterial activity of ZnO NPs produced with different amounts of CC flower extract and calcined at different temperatures (100, 200, 300, 400, and 500 °C) was investigated using modified disc diffusion method. Produced ZnO NPs displayed antibacterial activity against Staphylococcus aureus and Escherichia coli bacterial strains and were more effective against gram-positive pathogens. The findings displayed that the antibacterial activity of ZnO NPs is related to the particle size. This new environmentally friendly synthesis approach is a suitable technique for large-scale commercial production and can be considered as an alternative to chemical methods.

6.
Mater Sci Eng C Mater Biol Appl ; 80: 484-493, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28866191

ABSTRACT

Guided bone regeneration (GBR) concept has been developed to prevent the formation of non-functional scar tissue layer on defect site by undertaking barrier role. In this study, a new bilayer membrane which consisted of one layer of electrospun silk fibroin/PCL-PEG-PCL incorporating nanocalcium phosphate (SPCA)1 and one layer of PCL membrane was developed for GBR. To improve the osteoconductivity of membranes, nanosized calcium phosphate particles synthesized by Flame Spray Pyrolysis method were incorporated into membranes at 10% (wt) (SPCA10) and 20% (wt) (SPCA20) of the polymer content. The structural and chemical analyses revealed the well-integrated two layers of membranes with a total thickness of ca 100µm. In the regenerative layer, the highly porous mesh structure had a thickness of 12.6µm with randomly oriented fibers having diameters around 760nm, and nanoparticles dispersed homogenously. The mechanical test results showed remarkable improvement on the tensile strength of membranes with incorporation of nanoparticles. Higher water affinity of nanoCaP included membranes was proved by lower contact angle values and higher percent water uptake capacity. Biomineralization assay revealed that nucleation and growth of apatites around fibers of SPCA10 and SPCA20 were apparent while on SPCA0 apatite minerals were barely detected after 10days. Human dental pulp stem cells (DPSC) were seeded on electrospun layer of the bilayer membranes for biocompatibility and osteo-compatibility study. Increasing nanoCaP amount resulted in higher cell adhesion, proliferation, ALP activity and calcium deposition on membranes. These overall results confirmed the biocompatibility and potential applicability of proposed membranes for GBR treatments.


Subject(s)
Calcium Phosphates/chemistry , Biocompatible Materials , Bone Regeneration , Fibroins , Humans , Nanostructures , Polyesters , Polyethylene Glycols
7.
J Neurosurg Spine ; 6(2): 141-9, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17330581

ABSTRACT

OBJECT: Magnesium has recently become a material of interest as a biocompatible and biodegradable implant metal. Authors of several reports have noted the potential bone-cell activating or bone-healing effect of high Mg ion concentrations. The classic method for achieving intertransverse process fusion involves using an autologous iliac crest bone graft. Several studies have been performed to investigate enhancement of this type of autograft fusion. To the authors' knowledge, no research has been conducted in which the efficacy of pure Mg particles in posterolateral spinal fusion has been investigated. The objective of this study was to determine whether Mg particles enhance the effectiveness of intertransverse process lumbar fusion in a sheep model. METHODS: Sixteen skeletally mature female sheep were subjected to intertransverse process spinal fusions with pedicle screw fixation at L2-3 and L5-6. Each animal was given a 5-cm3 bone autograft at one fusion level, and a combined 5-cm3 bone autograft with the addition of 1 cm3 Mg at the other level. Six months after surgery, bone formation was evaluated by gross inspection and palpation, and by radiological, histological, scanning electron microscopic, and x-ray diffraction analyses. Radiological results were graded from 0 to 4 according to the status of the bridging bone, which was determined by evaluating both x-ray films and computed tomography scans. The quality of the spinal fusion was assigned a histological score of 0 to 7, in which a score of 0 represented an empty cleft and a score of 7 represented complete bridging of bone between the transverse processes. The trabecular bone formation at each fusion level and the Ca hydroxyapatite crystalline structure in core biopsy specimens were evaluated using scanning electron microscopy and x-ray diffraction analyses, respectively. The rate of rigid bone fusion, according to both palpation and radiological assessment, in the combined Mg and autologous bone treatment group was higher (81.25%) than in the autograft bone treatment group (62.5%), but this difference was not statistically significant. The quality of bone fusion, according to the histological grading system and scanning electron microscopy inspection, was higher in the bone fusion segments of the Mg and autologous graft combined group than in the group with autograft-only arthrodesis, and this difference was statistically significant. The x-ray diffraction analyses further confirmed the effect of Mg in promoting the formation of the crystalline portion of the bone (hydroxyapatite). CONCLUSIONS: Based on the results of this study, adding Mg particles to autologous corticocancellous bone in a posterolateral intertransverse process fusion enhances the quality of bone formation. However, radiological findings did not reveal a statistically significant effect of Mg on the rate of solid bone fusion formation between the two transverse processes.


Subject(s)
Lumbar Vertebrae/surgery , Magnesium , Prostheses and Implants , Spinal Fusion/methods , Animals , Bone Screws , Bone Transplantation , Female , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/pathology , Microscopy, Electron, Scanning , Particle Size , Sheep , Tomography, X-Ray Computed , Transplantation, Autologous , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...