Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Neuroimage ; 162: 45-55, 2017 11 15.
Article in English | MEDLINE | ID: mdl-28842385

ABSTRACT

Studies involving multivariate pattern analysis (MVPA) of BOLD fMRI data generally attribute the success of the information-theoretic approach to BOLD signal contrast on the fine spatial scale of millimeters facilitating the classification or decoding of perceptual stimuli. However, to date MVPA studies that have actually explored fMRI resolutions at less than 2 mm voxel size are rare and limited to small sets of unnatural stimuli (like visual gratings) as well as specific sub-regions of the brain, notably the primary somatosensory cortices. To investigate what spatial scale best supports high information extraction under more general conditions this study combined naturalistic movie stimuli with high-resolution fMRI at 7 T and linear discriminant analysis (LDA) of global and local BOLD signal patterns. Contrary to predictions, LDA and similar classifiers reached a maximum in classification accuracy (CA) at a smoothed resolution close to 3 mm, well above the 1.2 mm voxel size of the fMRI acquisition. Maximal CAs around 90% were contingent upon global fMRI signal patterns comprising 4 k-16 k of the most reactive voxels distributed sparsely throughout the occipital and ventro-temporal cortices. A Searchlight analysis of local fMRI patterns largely confirmed the global results, but also revealed a small subset of brain regions in early visual cortex showing limited increases in CA with higher resolution. Principal component analysis of the global and local fMRI signal patterns suggested that reproducible neuronal contributions were spatially auto-correlated and smooth, while other components of higher spatial frequency were likely related to physiological noise and responsible for the reduced CA at higher resolution. Systematic differences between experiments and subjects suggested that higher CA was significantly correlated with more consistent behavior revealed by eye tracking. Thus, the optimal resolution of fMRI data for MVPA was mainly limited by physiological noise of high spatial frequency as well as behavioral (in-)consistency.


Subject(s)
Brain Mapping/methods , Brain/physiology , Machine Learning , Magnetic Resonance Imaging/methods , Eye Movements/physiology , Female , Humans , Image Interpretation, Computer-Assisted/methods , Male , Pattern Recognition, Automated/methods , Principal Component Analysis , Visual Perception/physiology , Young Adult
2.
NMR Biomed ; 30(4)2017 Apr.
Article in English | MEDLINE | ID: mdl-27076394

ABSTRACT

While magnetic susceptibility is a major contributor to NMR resonance frequency variations in the human brain, a substantial contribution may come from the chemical exchange of protons between water and other molecules. Exchange-induced frequency shifts fe have been measured in tissue and protein solutions, but relatively lipid-rich white matter (WM) has a larger fe than gray matter, suggesting that lipids could contribute. Galactocerebrosides (GC) are a prime candidate as they are abundant in WM and susceptible to exchange. To investigate this, fe was measured in a model of WM lipid membranes in the form of multilamellar vesicles (MLVs), consisting of a 1:2 molar ratio of GC and phospholipids (POPC), and in MLVs with POPC only. Chemical shift imaging with 15% volume fraction of dioxane, an internal reference whose protons are assumed not to undergo chemical exchange, was used to remove susceptibility-induced frequency shifts in an attempt to measure fe in MLVs at several lipid concentrations. Initial analysis of these measurements indicated a necessity to correct for small unexpected variations in dioxane concentration due to its effect on the water frequency shift. To achieve this, the actual dioxane concentration was inferred from spectral analysis and its additional contribution to fe was removed through separate experiments which showed that the water-dioxane frequency shift depended linearly on the dioxane concentration at low concentrations with a proportionality constant of -0.021 ± 0.002 ppb/mM in agreement with published experiments. Contrary to expectations and uncorrected results, for GC + POPC vesicles, the dependence of the corrected fe on GC concentration was insignificant (0.023 ± 0.037 ppb/mM; r2 = 0.085, p > 0.57), whereas for the POPC-only vesicles a small but significant linear increase with POPC concentration was found: 0.044 ± 0.008 ppb/mM (r2 = 0.877, p < 0.01). These findings suggest that the exchange-induced contribution of lipids to frequency contrast in WM may be small. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.


Subject(s)
Lipids/chemistry , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Molecular Imaging/methods , White Matter/chemistry , White Matter/diagnostic imaging , Animals , Humans , Lipids/analysis , Reproducibility of Results , Sensitivity and Specificity
3.
Neuroimage ; 62(2): 676-81, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22245350

ABSTRACT

In the early days of BOLD fMRI, the acquisition of T(2)(*) weighted data was greatly facilitated by rapid scan techniques such as EPI. The latter, however, was only available on a few MRI systems that were equipped with specialized hardware that allowed rapid switching of the imaging gradients. For this reason, soon after the invention of fMRI, the scan technique PRESTO was developed to make rapid T(2)(*) weighted scanning available on standard clinical scanners. This method combined echo shifting, which allows for echo times longer than the sequence repetition time, with acquisition of multiple k-space lines per excitation. These two concepts were combined in order to achieve a method fast enough for fMRI, while maintaining a sufficiently long echo time for optimal contrast. PRESTO has been primarily used for 3D scanning, which minimized the contribution of large vessels due to inflow effects. Although PRESTO is still being used today, its appeal has lessened somewhat due to increased gradient performance of modern MRI scanners. Compared to 2D EPI, PRESTO may have somewhat reduced temporal stability, which is a disadvantage for fMRI that may not outweigh the advantage of reduced inflow effects provided by 3D scanning. In this overview, the history of the development of the PRESTO is presented, followed by a qualitative comparison with EPI.


Subject(s)
Brain Mapping/history , Brain Mapping/methods , Magnetic Resonance Imaging/history , Magnetic Resonance Imaging/methods , Brain/physiology , History, 20th Century , History, 21st Century , Humans , Image Processing, Computer-Assisted/history , Image Processing, Computer-Assisted/methods
4.
J Econ Entomol ; 102(3): 1301-8, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19610451

ABSTRACT

Quantitative enzyme-linked immunosorbent assays were used to characterize the geographical (locations) and temporal (through 6 wk) expression of CrylAc, from Bacillus thuringiensis variety kurstaki, and Cry1F, from B. thuringiensis variety aizawai, in transgenic cotton, Gossypium hirsutum L., plant structures. Terminal leaves, squares (flower buds), flowers, bolls (fruit), and mature leaves located five and eight nodes below the terminal apex were sampled during weeks 2, 4, and 6 after the initiation of anthesis. The effect of location (environment) significantly influenced protein expression levels, although similar trends were observed across locations. Cry1F was expressed at levels greater (1.1-29.0-fold) than that for CrylAc in all structures with exception to flowers. In contrast, the level of CrylAc in flowers was generally greater than Cry1F. Within each sampling period, concentrations of Cry1F in mature leaves (five and eight node) were greater than that for other structures. Expression was also greater for older, eight-node mature leaves than younger, five-node mature leaves. CrylAc expression in bolls was lowest compared with terminal leaves, squares, flowers, and mature leaves, which expressed at similar concentrations. Cry1F expression increased through time for mature leaves and terminal leaves; whereas, a decline in Cry1Ac protein concentration was observed for terminal leaves and bolls. The data presented here provides a means to understand observed levels of efficacy (patterns of insect damage) by comparing the spatial and temporal dynamics of expression for Cry1Ac and Cry1F in PhytoGen 440W transgenic cotton.


Subject(s)
Bacterial Proteins/metabolism , Endotoxins/metabolism , Gene Expression Regulation, Plant/genetics , Gossypium/genetics , Hemolysin Proteins/metabolism , Insect Control/methods , Plants, Genetically Modified/genetics , Bacillus thuringiensis Toxins , Bacterial Proteins/genetics , Endotoxins/genetics , Environment , Enzyme-Linked Immunosorbent Assay , Gossypium/microbiology , Hemolysin Proteins/genetics , Plant Components, Aerial/metabolism , Plants, Genetically Modified/microbiology
5.
AJNR Am J Neuroradiol ; 30(7): 1394-401, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19406765

ABSTRACT

BACKGROUND AND PURPOSE: Brains of patients with multiple sclerosis (MS) characteristically have "black holes" (BHs), hypointense lesions on T1-weighted (T1W) spin-echo (SE) images. Although conventional MR imaging can disclose chronic BHs (CBHs), it cannot stage the degree of their pathologic condition. Tissue-specific imaging (TSI), a recently introduced MR imaging technique, allows selective visualization of white matter (WM), gray matter (GM), and CSF on the basis of T1 values of classes of tissue. We investigated the ability of TSI-CSF to separate CBHs with longer T1 values, which likely represent lesions containing higher levels of destruction and unbound water. MATERIALS AND METHODS: Eighteen patients with MS, who had already undergone MR imaging twice (24 months apart) on a 1.5T scanner, underwent a 3T MR imaging examination. Images acquired at 1.5T included sequences of precontrast and postcontrast T1W SE, T2-weighted (T2W) SE, and magnetization transfer (MT). Sequences obtained at 3T included precontrast and postcontrast T1W SE, T2W SE, T1 inversion recovery prepared fast spoiled gradient recalled-echo (IR-FSPGR) and TSI. A BH on the 3T-IR-FSPGR was defined as a CBH if seen as a hypointense, nonenhancing lesion with a corresponding T2 abnormality for at least 24 months. CBHs were separated into 2 groups: those visible as hyperintensities on TSI-CSF (group A), and those not appearing on the TSI-CSF (group B). RESULTS: Mean MT ratios of group-A lesions (0.22 +/- 0.06, 0.13-0.35) were lower (F(1,13) = 60.39; P < .0001) than those of group-B lesions (0.32 +/- 0.03, 0.27-0.36). CONCLUSIONS: Group-A lesions had more advanced tissue damage; thus, TSI is a potentially valuable method for qualitative and objective identification.


Subject(s)
Algorithms , Brain/pathology , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Multiple Sclerosis/pathology , Adult , Female , Humans , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity
6.
Magn Reson Med ; 59(4): 788-95, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18383289

ABSTRACT

Although arterial spin labeling (ASL) MRI has been successfully applied to measure gray matter (GM) perfusion in vivo, accurate detection of white matter (WM) perfusion has proven difficult. Reported literature values are not consistent with each other or with perfusion measured with other modalities. In this work, the cause of these inconsistencies is investigated. The results suggest that WM perfusion values are substantially affected by the limited image resolution and by signal losses caused by the long transit times in WM, which significantly affect the label. From gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA) bolus-tracking experiments (N=6), it is estimated that the transit time can be several seconds long in deep WM. Furthermore, simulations show that even at a spatial resolution of 7 microl voxel size, contamination by the GM signals can exceed 40% of the actual WM signal. From 10-min long flow-sensitive alternating inversion recovery ASL (FAIR-ASL) measurements at 3T in normal subjects (N=7), using highly sensitive detectors, it is shown that single-voxel (7 mul) deep WM perfusion values have an signal-to-noise ratio (SNR) less than 1. The poor sensitivity and heterogeneous transit time limit the applicability of ASL for measurement of perfusion in WM.


Subject(s)
Artifacts , Brain/ultrastructure , Cerebral Arteries/anatomy & histology , Gadolinium DTPA , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Nerve Fibers, Myelinated/ultrastructure , Adult , Female , Humans , Image Enhancement/methods , Male , Perfusion , Reproducibility of Results , Sensitivity and Specificity , Spin Labels
7.
J Econ Entomol ; 101(6): 1950-9, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19133479

ABSTRACT

Cotton, Cossypium hirsutum L, plants expressing Cry1Ac and Cry1F (Phytogen 440W) insecticidal crystal proteins of Bacillus thuringiensis (Bt) Berliner, were evaluated against natural populations of tobacco budworm, Heliothis virescens (F.), and bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), across 13 southern U.S. locations that sustained low, moderate, and high infestations. The intrinsic activity of Phytogen 440W was compared with nontreated non-Bt cotton (PSC355) and with management strategies in which supplemental insecticides targeting heliothines were applied to Phytogen 440W and to PSC355 cotton. Infestations were composed primarily of bollworm, which is the least sensitive of the heliothine complex to Cry toxins. Therefore, damage recorded in these studies was primarily due to bollworm. Greater than 75% of all test sites sustained heliothine infestations categorized as moderate to high (10.6-64.0% peak damaged bolls in nontreated PSC355). Phytogen 440W, alone or managed with supplemental insecticide applications, reduced heliothine-damaged plant terminals, squares (flower buds), flowers, and bolls equal to or better (1.0-79.0-fold) than managing a non-Bt cotton variety with foliar insecticides across all infestation environments. Rarely (frequency of < or = 11% averaged across structures), sprayed Phytogen 440W reduced damaged structures compared with nontreated Phytogen 440W. Protection against heliothine-induced plant damage was similar across the three levels of infestation for each viable management strategy, with exception to damaged squares for nontreated Phytogen 440W. In situations of moderate to high heliothine infestations, cotton plants expressing Cry1Ac and Cry1F may sustain higher levels of damage compared with that same variety in low infestations. No significant difference in yield was observed among heliothine management strategies within each infestation level, indicating cotton plants may compensate for those levels of plant damage. These findings indicate Phytogen 440W containing Cry1Ac and Cry1F provided consistent control of heliothines across a range of environments and infestation levels.


Subject(s)
Bacterial Proteins/metabolism , Endotoxins/metabolism , Gossypium/genetics , Hemolysin Proteins/metabolism , Insect Control/methods , Moths , Plants, Genetically Modified/metabolism , Animals , Bacillus thuringiensis Toxins , Bacterial Proteins/genetics , Endotoxins/genetics , Gossypium/growth & development , Hemolysin Proteins/genetics , Insecticides , Plants, Genetically Modified/growth & development , United States
8.
J Econ Entomol ; 100(1): 180-6, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17370826

ABSTRACT

One susceptible and three Cry1Ac-resistant strains of tobacco budworm, Heliothis virescens (F.) (Lepidoptera: Noctuidae), were used in laboratory studies to determine the level of cross-resistance between the Bacillus thuringiensis (Berliner) toxins Cry1Ac and Vip3A by using concentration-mortality and leaf tissue experiments. Concentration-mortality data demonstrated that the three Cry1Ac-resistant H. virescens strains, YHD2, KCBhyb, and CxC, were at least 215- to 316-fold resistant to Cry1Ac compared with the susceptible strain, YDK. Results from Vip3A concentration-mortality tests indicated that mortality was similar among all four H. virescens strains. Relative larval growth on Cry1Ac reflected concentration-mortality test results, because YHD2 larval growth was mostly unaffected by the Cry1Ac concentrations tested. Growth ratios for KCBhyb and CXC indicated that they had a more moderate level of resistance to Cry1Ac than did YHD2. Relative larval growth on Vip3A was highly variable at lower concentrations, but it was more consistent on concentrations of Vip3A above 25 microg/ml. Differences in larval growth among strains on Vip3A were not as pronounced as seen in Cry1Ac experiments. Mortality and larval growth also was assessed in leaf tissue bioassays in which YDK, CxC, and KCBhyb neonates were placed onto leaf disks from non-Bt and Bt cotton, Gossypium hirsutum L., for 5 d. Three Bt lines were used in an initial bioassay and consisted of two Vip3A-containing lines, COT203 and COT102, and a Cry1Ac-producing line. Mortality of KCBhyb and CXC was lower than that of YDK larvae in the presence of leaf tissue from the Cry1Ac-producing line. Additionally, increased larval growth and leaf tissue consumption on Cry1Ac-containing leaf disks was observed for KCBhyb and CXC. Mortality and larval weights were similar among strains when larvae were fed leaf tissue of either non-Bt, COT203, or COT102. A subsequent leaf tissue bioassay was conducted that evaluated four cotton lines: non-Bt, Cry1Ab-expressing, Vip3A-expressing, and pyramided-toxin plants that produced both Cry1Ab and Vip3A. Mortality levels were similar among strains when fed non-Bt, Vip3A-expressing, or pyramided-toxin leaf tissues. Mortality was higher for YDK than for KCBhyb or CXC on Cry1Ab-expressing leaf tissues. No differences in larval weights were observed among strains for any genotype tested. Results of these experiments demonstrate that cross-resistance is nonexistent between CrylAc and Vip3A in H. virescens. Thus, the introduction of Vip3A-producing lines could delay Cry1Ac-resistance evolution in H. virescens, if these lines gain a significant share of the market.


Subject(s)
Bacterial Proteins/pharmacology , Bacterial Toxins/pharmacology , Endotoxins/pharmacology , Hemolysin Proteins/pharmacology , Insecticide Resistance/genetics , Insecticides/pharmacology , Moths/drug effects , Animals , Bacillus thuringiensis Toxins , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Plant , Gossypium/genetics , Moths/genetics , Plants, Genetically Modified
9.
Magn Reson Med ; 57(2): 362-8, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17260378

ABSTRACT

In MRI of human brain, the respiratory cycle can induce B0-field fluctuations through motion of the chest and fluctuations in local oxygen concentration. The associated NMR frequency changes can affect the MRI data in various ways and lead to temporal signal fluctuations, and image artifacts such as ghosting and blurring. Since the size of the effect scales with magnetic field strength, artifacts become particularly problematic at fields above 3.0T. Furthermore, the spatial dependence of the B0-field fluctuations complicates their correction. In this work, a new method is presented that allows compensation of field fluctuations by modulating the B0 shims in real time. In this method, a reference scan is acquired to measure the spatial distribution of the B0 effect related to chest motion. During the actual scan, this information is then used, together with chest motion data, to apply compensating B0 shims in real time. The method can be combined with any type of scan without modifications to the pulse sequence. Real-time B0 shimming is demonstrated to substantially improve the phase stability of EPI data and the image quality of multishot gradient-echo (GRE) MRI at 7T.


Subject(s)
Brain Mapping/methods , Magnetic Resonance Imaging/methods , Respiratory Physiological Phenomena , Adult , Artifacts , Female , Humans , Image Processing, Computer-Assisted , Male , Motion , Oxygen/metabolism
10.
Hum Brain Mapp ; 28(5): 431-40, 2007 May.
Article in English | MEDLINE | ID: mdl-17133397

ABSTRACT

It is unclear how effort translates into brain function. In this study we endeavored to identify the activity in a working memory task that is related to the allocation of mental resources. Such activity, if present, would be a likely candidate to explain how effort works in terms of brain function. Eleven healthy participants performed a Sternberg task with a memory-set of one, three, or five consonants in an fMRI study. Probe stimuli were either one consonant or one digit. We expected digits to be processed automatically and consonants to require working memory. Because the probe type was unpredictable and subjects had to respond as fast as possible, we expected subjects to allocate mental resources on the basis of the memory-set size, not the probe type. Accordingly, we anticipated that activity in regions involved in effort would be a function of the size of the memory-set, but independent of the type of probe. We found that the reaction-time for digits increased in line with our expectation of automatic processing and the reaction time for letters increased in line with our expectation of controlled processing. fMRI revealed that activity in the right ventral-prefrontal cortex changed as a function of effort. The ventral anterior cingulate cortex and hypothalamus showed reduced activity as a function of effort. Activity in regions regarded as pivotal for working memory (among others, the left dorsolateral prefrontal cortex, anterior cingulate cortex) appeared to be predominantly related to information processing and not involved in effort.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Memory, Short-Term/physiology , Mental Processes/physiology , Neuropsychological Tests , Adult , Cerebral Cortex/blood supply , Cerebral Cortex/physiology , Female , Functional Laterality , Humans , Image Processing, Computer-Assisted/methods , Male , Oxygen/blood , Reaction Time/physiology
11.
J Econ Entomol ; 99(5): 1790-7, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17066814

ABSTRACT

To evaluate resistance to Bacillus thuringiensis Berliner (Bt) toxins, adult female bollworms, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), were collected from four light trap locations in two eastern North Carolina counties from August to October during 2001 and 2002. Females were allowed to oviposit, and upon hatching, 24 neonates from each female (F1 lines) were screened for survival and growth rate on each of three diets: non-Bt diet, diet containing 5.0 microg/ml Cry1Ac toxin, or diet containing 5.0 microg/ml Cry2Ab toxin. These screens were designed to identify nonrecessive Bt resistance alleles present in field populations of bollworm. Of 561 and 691 families screened with both Cry1Ac- and Cry2Ab-containing diets in 2001 and 2002, respectively, no F1 lines were identified that seemed to carry a gene conferring substantial resistance to either Cry1Ac or Cry2Ab. Adults from F1 lines with growth scores in the highest (R) and lowest (S) quartiles were mated in four combinations, RxR, SxR, RxS, and SxS. Differences in growth rates of larvae from these crosses demonstrated that there is substantial quantitative genetic variation in eastern North Carolina populations for resistance to both Cry1Ac and Cry2Ab toxins. These findings, in addition to results suggesting partially dominant inheritance of resistance to Cry1Ac and Cry2Ab, are critically important for determining appropriate resistance management strategies that impact the sustainability of transgenic cotton, Gossypium hirsutum (L.).


Subject(s)
Bacterial Proteins , Bacterial Toxins , Endotoxins , Hemolysin Proteins , Moths/genetics , Animals , Bacillus thuringiensis Toxins , Female , Genetic Variation , Gossypium/parasitology , Insecticide Resistance/genetics , Larva/growth & development , Moths/growth & development , North Carolina
12.
J Econ Entomol ; 97(5): 1719-25, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15568364

ABSTRACT

Transgenic cotton, Gossypium hirsutum (L.), expressing either one or two Bacillus thuringiensis ssp. kurstaki Berliner (Bt) proteins was compared with the conventional sister line in field experiments with regard to production of bollworm, Helicoverpa zea (Boddie), and bolls damaged by bollworm. The relative numbers of bollworms that developed on Bollgard (Monsanto Co., St. Louis, MO), Bollgard II (Monsanto Co.), and conventional cotton were estimated under nontreated conditions in 2000 and both insecticide-treated and nontreated conditions in 2001-2002 in North Carolina tests. Averaged across seven field studies under nontreated conditions, Bollgard cotton generated statistically similar numbers of large (L4-L5) bollworm larvae compared with the conventional variety; however, Bollgard cotton produced significantly fewer damaged bolls and bollworm adults than the conventional variety. Production of large larvae, damaged bolls, and adults was decreased dramatically by Bollgard II cotton as compared with Bollgard and conventional varieties. When comparing insecticide-treated and nontreated cotton genotypes, both Bt cotton sustained less boll damage than the conventional variety averaged across insecticide regimes; furthermore, Bollgard II cotton had fewer damaged bolls than the Bollgard variety. When averaged across cotton genotypes, pyrethroid oversprays reduced the numbers of damaged bolls compared with the nontreated cotton. Insecticide-treated Bollgard cotton, along with insecticide-treated and nontreated Bollgard II cotton reduced production of bollworm larvae, pupae, and adults. However, the addition of pyrethroid oversprays to Bollgard II cotton seemed to be the best resistance management strategy available for bollworm because no bollworms were capable of completing development under these conditions.


Subject(s)
Bacillus thuringiensis , Bacterial Proteins/biosynthesis , Bacterial Toxins/biosynthesis , Endotoxins/biosynthesis , Gossypium/genetics , Insecticides , Lepidoptera , Pest Control, Biological/methods , Animals , Bacillus thuringiensis Toxins , Gossypium/parasitology , Hemolysin Proteins , Insecticide Resistance , Plants, Genetically Modified , Population Dynamics
13.
Neuroradiology ; 44(1): 37-42, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11942498

ABSTRACT

We studied 24 patients with multiple sclerosis (MS) by proton magnetic resonance spectroscopic imaging (1H-MRSI) to assess the neurochemical pathology of the white-matter lesions (WML) and normal-appearing white matter (NAWM). Our 1H-MRSI technique allowed simultaneous measurement of N-acetylaspartate (NAA), choline-containing compounds (Cho), and creatine plus phosphocreatine (Cr) signal intensities from four 15-mm slices divided into 0.84 ml single-volume elements. In WML we found significantly lower NAA/Cr and NAA/Cho ratios and a significantly higher Cho/Cr ratio than in NAWM or control white matter. In NAWM, NAA/Cr and Cho/Cr were significantly lower than in control white matter. 1H-MRSI was compatible with damage to myelin in WML, and with axonal damage and/or dysfunction in WML and NAWM. These findings extend data on involvement of NAWM in MS beyond the abnormalities visible on MRI.


Subject(s)
Magnetic Resonance Spectroscopy , Multiple Sclerosis/diagnosis , Adult , Female , Humans , Male , Middle Aged
14.
J Econ Entomol ; 94(5): 1268-79, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11681693

ABSTRACT

Transgenic varieties of field corn that express the CrylAb B. thuringiensis (Bt) toxin in ear tissue present the potential of reducing ear feeding by the corn earworm, Helicoverpa zea (Lepidoptera: Noctuidae), and for reducing the size of populations of the insect infesting other host crops. Life history parameters of H. zea feeding on ears of conventional and Bt field corn varieties were measured in field plots in eastern North Carolina in 1997 and 1998. Transformation events investigated were Mon-810 and Bt-11. Bt corn was found to cause a steady mortality of larvae during development, but permitted approximately 15-40% survival to the prepupal stage compared with non-Bt corn. Mortality of prepupae and pupae from Bt corn was also higher than from non-Bt corn, reducing overall adult production by 65-95%. The larvae that did survive grew more slowly on Bt than on non-Bt corn, and produced pupae that weighed 33% less. Pupation and adult eclosion were delayed by 6-10 d by feeding on Bt corn ears. Corn varieties expressing Bt in ear tissue have the potential to reduce H. zea ear feeding by up to 80%, and the potential to reduce populations emerging from ear-stage corn fields to infest cotton, soybean and other crops by around 75%. To have a measurable effect on area-wide populations, Bt corn varieties would need to be planted in large proportions of corn fields. Extensive planting of varieties such as those tested here, having only moderate effects on H. zea, would raise concerns about rapid evolution of resistance.


Subject(s)
Bacillus thuringiensis , Bacterial Proteins , Bacterial Toxins , Endotoxins , Moths/growth & development , Pest Control, Biological/methods , Zea mays , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis Toxins , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Body Weight , Chimera , Endotoxins/genetics , Female , Hemolysin Proteins , Larva/growth & development , Male , North Carolina , Plants, Genetically Modified , Pupa/growth & development , Time Factors
16.
Magn Reson Med ; 46(1): 88-94, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11443714

ABSTRACT

A method is presented for measurement of perfusion changes during brain activation using a single-shot pulsed spin labeling technique. By employing a double-inversion labeling strategy, stationary tissue (background) signal was suppressed while minimally affecting perfusion sensitivity. This allowed omission of the otherwise required reference scan, resulting in twofold-improved temporal resolution. The method was applied to visual and motor cortex activation studies in humans, and compared to standard FAIR-type perfusion labeling techniques. Experiments performed at 1.5T and 3.0T indicate a close to 90% suppression of background signal, at a cost of an 11% and 9%, respectively, reduction in perfusion signal. Combined with the twofold increase in signal averaging, and a reduction in background signal fluctuations, this resulted in a 64% (1.5T, N = 3) and a 128% (3T, N = 4) overall improvement in sensitivity for the detection of activation-related perfusion changes. Magn Reson Med 46:88-94, 2001. Published 2001 Wiley-Liss, Inc.


Subject(s)
Brain/anatomy & histology , Magnetic Resonance Imaging/methods , Brain/physiology , Humans , Perfusion
17.
J Econ Entomol ; 94(3): 634-9, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11425017

ABSTRACT

Cereal leaf beetle, Oulema melanopus (L.), has become a serious pest of small grains in the mid-Atlantic region of the United States. Existing thresholds for implementing control measures allowed too much leaf damage and consequent yield loss to occur before recommending treatment. Information on beetle biology and crop response to injury, both prerequisites for developing new management strategies, was lacking for this region. A 3-yr project was initiated to generate an area wide cereal leaf beetle biological and yield impact database for winter wheat, and to evaluate the injury and yield loss potential of different population densities. Over the study period, beetle populations were evaluated at 26 winter wheat field locations in Virginia and North Carolina. Eggs and larvae, classified to instar, were counted twice each week from February to June. Replicated insecticide versus noninsecticide treatments were conducted at each location where leaf defoliation and yield were documented. Results showed that the relationship between 50th percentile egg and fourth-instar population estimates were in strong agreement (y = 0.36x - 0.01; r2 = 0.79). Potentially detrimental larval infestations were forecast before appearance of foliage injury from egg populations present during the stem elongation to flag leaf emergence developmental stages. A significant positive linear relationship between total fourth instar per stem population estimates and percent flag leaf defoliation was detected (y = 20.29x + 1.34; r2 = 0.60). A weaker but still significant relationship between the total fourth-instar population estimates and percent yield loss was found (y = 11.74x + 6.51; r2 = 0.26), indicating that factors in addition to flag leaf injury, primarily by fourth instars, also contributed to reduced yields.


Subject(s)
Coleoptera/growth & development , Triticum/growth & development , Animals , Larva , North Carolina , Ovum , Population Density , Seasons , Virginia
18.
Magn Reson Imaging ; 19(9): 1159-65, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11755725

ABSTRACT

Functional MRI (fMRI) studies designed for simultaneously measuring Blood Oxygenation Level Dependent (BOLD) and Cerebral Blood Flow (CBF) signal often employ the standard Flow Alternating Inversion Recovery (FAIR) technique. However, some sensitivity is lost in the BOLD data due to inherent T1 relaxation. We sought to minimize the preceding problem by employing a modified UN-inverted FAIR (UNFAIR) technique, which (in theory) should provide identical CBF signal as FAIR with minimal degradation of the BOLD signal. UNFAIR BOLD maps acquired from human subjects (n = 8) showed significantly higher mean z-score of approximately 17% (p < 0.001), and number of activated voxels at 1.5T. On the other hand, the corresponding FAIR perfusion maps were superior to the UNFAIR perfusion maps as reflected in a higher mean z-score of approximately 8% (p = 0.013), and number of activated voxels. The reduction in UNFAIR sensitivity for perfusion is attributed to increased motion sensitivity related to its higher background signal, and, T2 related losses from the use of an extra inversion pulse. Data acquired at 3.0T demonstrating similar trends are also presented.


Subject(s)
Brain/physiology , Magnetic Resonance Imaging/methods , Cerebrovascular Circulation , Feasibility Studies , Image Processing, Computer-Assisted , Oxygen Consumption , Sensitivity and Specificity
19.
Cereb Cortex ; 10(11): 1078-92, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11053229

ABSTRACT

Evidence implicates subtle neuronal pathology of the prefrontal cortex (PFC) in schizophrenia, but how this pathology is reflected in physiological neuroimaging experiments remains controversial. We investigated PFC function in schizophrenia using functional magnetic resonance imaging (fMRI) and a parametric version of the n-back working memory (WM) task. In a group of patients who performed relatively well on this task, there were three fundamental deviations from the 'healthy' pattern of PFC fMRI activation to varying WM difficulty. The first characteristic was a greater magnitude of PFC fMRI activation in the context of slightly impaired WM performance (i.e. physiological inefficiency). The second was that the significant correlations between behavioral WM performance and dorsal PFC fMRI activation were in opposite directions in the two groups. Third, the magnitude of the abnormal dorsal PFC fMRI response was predicted by an assay of N-acetylaspartate concentrations (NAA) in dorsal PFC, a measure of neuronal pathology obtained using proton magnetic resonance spectroscopy. Patients had significantly lower dorsal PFC NAA than controls and dorsal PFC NAA inversely predicted the fMRI response in dorsal PFC (areas 9, 46) to varying WM difficulty - supporting the assumption that abnormal PFC responses arose from abnormal PFC neurons. These data suggest that under certain conditions the physiological ramifications of dorsal PFC neuronal pathology in schizophrenia includes exaggerated and inefficient cortical activity, especially of dorsal PFC.


Subject(s)
Aspartic Acid/analogs & derivatives , Magnetic Resonance Imaging , Memory/physiology , Prefrontal Cortex/physiopathology , Schizophrenia/physiopathology , Adolescent , Adult , Analysis of Variance , Aspartic Acid/metabolism , Female , Humans , Male , Prefrontal Cortex/pathology , Schizophrenia/pathology
20.
J Econ Entomol ; 93(4): 1127-36, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10985022

ABSTRACT

Field studies were conducted in 1996 and 1997 to reevaluate the use of augmentative releases of Trichogramma wasps for heliothine management in cotton. In 1996, nine releases of Trichogramma exiguum Pinto & Platner, spaced 3-4 d apart, were made into three 0.4-ha cotton plots. Six weekly releases were made in 1997, each containing two T. exiguum cohorts developmentally staggered by 45 degrees C degree-days. Field release rates, estimated from laboratory and field quality control data, averaged 108,357 T. exiguum female female per hectare per cohort per release in 1996 and 193,366 female female per hectare per cohort per release in 1997. In 1996, mean +/- SD adult emergence under laboratory conditions for released cohorts was 92 +/- 7%; 62 +/- 5% of emerged adults were females, 3 +/- 2% of females displayed brachyptery (nonfunctional wings), mean female longevity under laboratory conditions was 15 +/- 4 d, and mean +/- SD field emergence was 97 +/- 2%. Quality control measurements were similar in 1997. In 1996, mean +/- SD percent parasitism of heliothine eggs in field plots on the sampled dates ranged from 67 +/- 4 to 83 +/- 5% in T. exiguum release plots and 25 +/- 9 to 55 +/- 8% in control plots. In 1997, parasitism levels ranged from 74 +/- 4 to 89 +/- 5% in T. exiguum release plots and 18 +/- 18 to 69 +/- 11% in control plots. Despite increased parasitism levels in T. exiguum release plots, there were no significant differences in density of fifth instars, boll damage, or yield between T. exiguum release and control plots. Therefore, it is concluded that Trichogramma augmentation is not an effective heliothine management tool in North Carolina cotton.


Subject(s)
Moths/parasitology , Pest Control, Biological/methods , Wasps , Animals , Evaluation Studies as Topic , Female , Larva , North Carolina , Ovum
SELECTION OF CITATIONS
SEARCH DETAIL
...