Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 24(10): 9079-9088, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27164879

ABSTRACT

The objective of this study is to evaluate the current status of heavy metal concentrations in constructed wetland, Shaoguan (Guangdong, China). Sediments, three wetland plants (Typha latifolia, Phragmites australis, and Cyperus malaccensis), and six freshwater fish species [Carassius auratus (Goldfish), Cirrhinus molitorella (Mud carp), Ctenopharyngodon idellus (Grass carp), Cyprinus carpio (Wild common carp), Nicholsicypris normalis (Mandarin fish), Sarcocheilichthys kiangsiensis (Minnows)] in a constructed wetland in Shaoguan were collected and analyzed for their heavy metal compositions. Levels of Pb, Zn, Cu, and Cd in sediments exceeded approximately 532, 285, 11, and 66 times of the Dutch Intervention value. From the current study, the concentrations of Pb and Zn in three plants were generally high, especially in root tissues. For fish, concentrations of all studied metals in whole body of N. mormalis were the highest among all the fishes investigated (Pb 113.4 mg/kg, dw; Zn 183.1 mg/kg, dw; Cu 19.41 mg/kg, dw; 0.846 mg/kg, dw). Heavy metal accumulation in different ecological compartments was analyzed by principle component analysis (PCA), and there is one majority of grouped heavy metals concentration as similar in composition of ecological compartment, with the Cd concentration quite dissimilar. In relation to future prospect, phytoremediation technology for enhanced heavy metal accumulation by constructed wetland is still in early stage and needs more attention in gene manipulation area.


Subject(s)
Wetlands , Zinc , Animals , Carps , China , Environmental Monitoring , Lead , Metals, Heavy , Water Pollutants, Chemical
2.
Environ Geochem Health ; 28(4): 375-91, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16752128

ABSTRACT

Ever-increasing heavy metal accumulation in the urban environment of Guangzhou, the largest light industrial production base and one of the most rapidly developing cities in China, poses a serious threat to environment as well as to human health in the region. As a sink or source, urban deposits are good indicators of the level and extent of heavy metal accumulation in the surface environment. The aim of this preliminary study was to examine the distribution of heavy metal contamination in the urban environment of Guangzhou. It was based on a systematic sampling of road dusts and corresponding gully sediments along major roads running mainly through commercial and residential to industrial districts of the city. In addition to road dusts and gully sediments, ceiling dusts from the Pearl River Tunnel were also collected to characterize anthropogenic emissions dominated by traffic-related activities. In general, the level of Cd, Cu, Pb and Zn contaminations were more severe on the industrialized side of Guangzhou than on the western side where heavy traffic and industrial activities were limited. The primary determinants of the level of heavy metal contamination and the distribution of this contamination in the urban environment of Guangzhou were the site-specific conditions of its urban setting, particularly the types of industries, the nature of the traffic flow, sample residence times and variations in grain size of the particulate contaminants. This study highlights the complexity of the urban system and indicates that in just such a system individual urban components should be interlinked to assess the long-term environmental and health effects of heavy metal contamination. Among the heavy metals tested--Cd, Cu, Pb and Zn--the level of Zn contamination was the most severe and widespread, and thus requires immediate attention.


Subject(s)
Environmental Pollutants/chemistry , Metals, Heavy/chemistry , China , Environmental Pollutants/analysis , Metals, Heavy/analysis , Particle Size
3.
Environ Int ; 30(2): 209-17, 2004 Apr.
Article in English | MEDLINE | ID: mdl-14749110

ABSTRACT

The source and the extent of Pb pollution in the urban environment of Hong Kong were investigated at five different urban settings selected on the basis of their annual average daily traffic (AADT) varying from less than 100 to 61,700. In addition, a small distant island without any traffic was selected to establish the possible baseline values. The surface environmental samples studied consisted of street and tunnel dusts, gully sediments, and a limited number of roadside topsoils. The analytical results clearly indicated variable degrees of Pb contamination in these urban settings. However, the level of contamination varied significantly among different types of samples collected at the same location. Pb concentrations of roadside topsoils (79+/-22 micrograms/g) and gully sediments (278+/-88 micrograms/g) were lower than those of the corresponding road dusts (327+/-54 micrograms/g). The Pb isotope compositions in different urban settings varied considerably. The bedrock in the small island had the lowest Pb concentration (12 micrograms/g) but with the highest 206Pb/207Pb ratio (1.2206), whereas the tunnel ceiling dusts with the highest level of Pb (1410 micrograms/g) had the lowest 206Pb/207Pb ratio (1.1062). Despite the significant differences in vehicle types and traffic volumes, and the presence of several different petroleum retailers in Hong Kong, the Pb isotope ratios of road dusts (206Pb/207Pb: 1.1553+/-0.0043, 208Pb/207Pb: 2.4408+/-0.0084) varied within a relatively narrow range among all the five urban sampling sites. On the other hand, the Pb isotopic compositions of gully sediments (206Pb/207Pb: 1.1515+/-0.0145, 208Pb/207Pb: 2.4322+/-0.0198) varied noticeably within the same setting, but were reasonably comparable across the different study sites. In general, the 206Pb/207Pb ratios of road dusts can be used to estimate the direct contribution from automobile emissions, whereas those of gully sediments might reflect the effects of the mixing of different anthropogenic sources. The Pb isotope signatures in the urban environment of Hong Kong clearly suggested that anthropogenic Pb in the environment originated from Pb ore with a low 206Pb/207Pb ratio (such as the Australian Pb ore and similar sources in Southeast Asia) were significantly different from those of the anthropogenic Pb present in the neighboring Pearl River Delta (PRD) region.


Subject(s)
Air Pollutants/analysis , Lead/analysis , Soil Pollutants/analysis , Vehicle Emissions/analysis , Cities , Dust , Environmental Monitoring , Geologic Sediments/chemistry , Hong Kong , Isotopes/analysis
4.
Environ Int ; 26(5-6): 359-68, 2001 May.
Article in English | MEDLINE | ID: mdl-11392752

ABSTRACT

The behaviour of whole-rock major, trace and rare earth elements (REE) during weathering under subtropical conditions is examined along a profile developed over crystal--vitric tuffs with eutaxitic texture. The intensity of weathering within the profile varies erratically, indicating weathering processes operate over different scales. Quartz, K-feldspar, plagioclase and biotite are the main primary minerals, whereas clays, sesquioxides, sericite and chlorite are the alteration products. Kaolinite, halloysite and illite-mica are the dominant clay minerals present in significantly varying proportions. Two competing processes, namely leaching and fixation, are the main regulators of variations in mostly major and some trace element concentrations along the profile. In general, as the intensity of weathering increases, Ca, Na, K, Sr +/- Si decrease, while Fe, Ti, Al and loss of ignition (LOI) increase. Likewise, the intensity of negative Eu-anomaly decreases while the intensity of negative Ce-anomaly and the La/Lu and Sm/Nd ratios increases. In detail, however, the behaviour of chemical elements cannot be solely explained in terms of the degree of weathering. This study makes it clearly evident that the type and abundance of sesquioxides and clay minerals can significantly modify the geochemical signatures of weathering processes.


Subject(s)
Aluminum Silicates/chemistry , Trace Elements/chemistry , Chemical Phenomena , Chemistry, Physical , Clay , Environmental Monitoring , Geological Phenomena , Geology , Minerals , Weather
SELECTION OF CITATIONS
SEARCH DETAIL
...