Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Assay Drug Dev Technol ; 12(2): 110-9, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24579774

ABSTRACT

Voltage-gated Ca2+ channels play essential roles in control of neurosecretion and muscle contraction. The pharmacological significance of Cav channels stem from their identification as the molecular targets of calcium blockers used in the treatment of cardiovascular diseases, such as hypertension, angina, and arrhythmia, and neurologic diseases, such as pain and seizure. It has been proposed that state-dependent Cav inhibitors, that is, those that preferentially bind to channels in open or inactivated states, may improve the therapeutic window over relatively state-independent Cav inhibitors. High-throughput fluorescent-based functional assays have been useful in screening chemical libraries to identify Cav inhibitors. However, hit confirmation, mechanism of action, and subtype selectivity are better suited to automated patch clamp assays that have sufficient capacity to handle the volume of compounds identified during screening, even of modest sized libraries (≤500,000 compounds), and the flexible voltage control that allows evaluation of state-dependent drug blocks. IonWorks Barracuda (IWB), the newest generation of IonWorks instruments, provides the opportunity to accelerate the Cav drug discovery studies in an automated patch clamp platform in 384-well format capable of medium throughput screening and profiling studies. We have validated hCav1.2, hCav2.1, hCav2.2, and hCav3.2 channels assays on the IWB platform (population patch clamp mode) and demonstrated that the biophysical characteristics of the channels (activation, inactivation, and steady-state inactivation) obtained with the IWB system are consistent with known subtype-specific characteristics. Using standard reference compounds (nifedipine, BAY K8644, verapamil, mibefradil, and pimozide), we demonstrated subtype-selective and state- and use-dependent characteristics of drug-channel interactions. Here we describe the design and validation of novel robust high-throughput Cav channel assays on the IWB platform. The assays can be used to screen focused compound libraries for state-dependent Cav channel antagonists, to prioritize compounds for potency or to counterscreen for Cav subtype selectivity.


Subject(s)
Calcium Channel Blockers/pharmacology , Calcium Channels/physiology , Electrophysiological Phenomena/drug effects , Electrophysiological Phenomena/physiology , Animals , CHO Cells , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Drug Evaluation/methods , HEK293 Cells , Humans , Membrane Potentials/drug effects , Membrane Potentials/physiology
2.
Bioorg Med Chem Lett ; 22(3): 1421-6, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22226656

ABSTRACT

Serotoninergic neurotransmission has been implicated in modulation of learning and memory. It has been demonstrated that 5-hydroxytryptamine(6) (5-HT(6)) receptor antagonists show beneficial effect on cognition in several animal models. Based on a pharmacophore model reported in the literature, we have designed and successfully identified a 7-benzenesulfonyl-1,2,3,4-tetrahydro-benzo[4,5]furo[2,3-c]pyridine (3a) scaffold as a novel class of 5-HT(6) receptor antagonists. Despite good activity against 5-HT(6) receptor, 3a exhibited poor liver microsome stability in mouse, rat and dog. It was demonstrated that the saturation of the double bond of the tetrahydropyridine ring of 3a enhanced metabolic stability. However the resulting compound, 4a (7-phenylsulfonyl-1,2,3,4,4a,9a-hexahydro-benzo[4,5]furo[2,3-c] pyridine-HCl salt) exhibited ∼30-fold loss in potency along with introduction of two chiral centers. In our optimization process for this series, we found that substituents at the 2 or 3 positions on the distal aryl group are important for enhancing activity against 5-HT(6). Separation of enantiomers and subsequent optimization and SAR with bis substituted phenyl sulfone provided potent 5-HT(6) antagonists with improved PK profiles in rat. A potent, selective 5-HT(6)R antagonist (15k) was identified from this study which showed good oral bioavailability (F=39%) in rat with brain penetration (B/P=2.76) and in vivo activity in a rat social recognition test.


Subject(s)
Brain/drug effects , Heterocyclic Compounds, 3-Ring/chemistry , Heterocyclic Compounds, 3-Ring/pharmacology , Serotonin Antagonists/chemistry , Serotonin Antagonists/pharmacology , Sulfones/chemistry , Sulfones/pharmacology , Animals , Dogs , Humans , Inhibitory Concentration 50 , Mice , Microsomes, Liver/drug effects , Molecular Structure , Rats , Receptors, Serotonin , Serotonin Antagonists/pharmacokinetics , Stereoisomerism
3.
Bioorg Med Chem Lett ; 22(1): 120-3, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22153937

ABSTRACT

7-Arylsulfonyl substituted benzofuropiperidine was discovered as a novel scaffold for 5HT(6) receptor antagonists. Optimization by substitution at C-1 position led to identification of selective, orally bioavailable, brain penetrant antagonists with reduced hERG liability. An advanced analog tested in rat social recognition model showed significant activity suggesting potential utility in the enhancement of short-term memory.


Subject(s)
Benzofurans/chemistry , Piperidines/chemistry , Receptors, Serotonin/chemistry , Serotonin Antagonists/pharmacology , Animals , Brain/embryology , Brain/metabolism , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/metabolism , Humans , Inhibitory Concentration 50 , Kinetics , Memory, Short-Term/drug effects , Models, Chemical , Rats , Schizophrenia/drug therapy , Structure-Activity Relationship
4.
J Pharmacol Exp Ther ; 340(1): 124-33, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22001260

ABSTRACT

CEP-26401 [irdabisant; 6-{4-[3-((R)-2-methyl-pyrrolidin-1-yl)-propoxy]-phenyl}-2H-pyridazin-3-one HCl] is a novel, potent histamine H3 receptor (H3R) antagonist/inverse agonist with drug-like properties. High affinity of CEP-26401 for H3R was demonstrated in radioligand binding displacement assays in rat brain membranes (K(i) = 2.7 ± 0.3 nM) and recombinant rat and human H3R-expressing systems (K(i) = 7.2 ± 0.4 and 2.0 ± 1.0 nM, respectively). CEP-26401 displayed potent antagonist and inverse agonist activities in [³5S]guanosine 5'-O-(γ-thio)triphosphate binding assays. After oral dosing of CEP-26401, occupancy of H3R was estimated by the inhibition of ex vivo binding in rat cortical slices (OCC50 = 0.1 ± 0.003 mg/kg), and antagonism of the H3R agonist R-α-methylhistamine- induced drinking response in the rat dipsogenia model was demonstrated in a similar dose range (ED50 = 0.06 mg/kg). CEP-26401 improved performance in the rat social recognition model of short-term memory at doses of 0.01 to 0.1 mg/kg p.o. and was wake-promoting at 3 to 30 mg/kg p.o. In DBA/2NCrl mice, CEP-26401 at 10 and 30 mg/kg i.p. increased prepulse inhibition (PPI), whereas the antipsychotic risperidone was effective at 0.3 and 1 mg/kg i.p. Coadministration of CEP-26401 and risperidone at subefficacious doses (3 and 0.1 mg/kg i.p., respectively) increased PPI. These results demonstrate potent behavioral effects of CEP-26401 in rodent models and suggest that this novel H3R antagonist may have therapeutic utility in the treatment of cognitive and attentional disorders. CEP-26401 may also have therapeutic utility in treating schizophrenia or as adjunctive therapy to approved antipsychotics.


Subject(s)
Cognition/drug effects , Histamine H3 Antagonists/pharmacology , Nootropic Agents , Pyridazines/pharmacology , Pyrrolidines/pharmacology , Wakefulness/drug effects , Animals , Autoradiography , Behavior, Animal/drug effects , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , DNA, Complementary/biosynthesis , DNA, Complementary/genetics , Dose-Response Relationship, Drug , Drinking/drug effects , Electroencephalography/drug effects , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Male , Memory, Short-Term/drug effects , Radioligand Assay , Rats , Rats, Long-Evans , Rats, Sprague-Dawley , Recognition, Psychology/drug effects , Reflex, Startle/drug effects , Sleep/drug effects , Social Behavior
5.
Anal Biochem ; 400(2): 184-9, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20109436

ABSTRACT

Assay technologies that measure intracellular Ca(2+) release are among the predominant methods for evaluation of GPCR function. These measurements have historically been performed using cell-permeable fluorescent dyes, although the use of the recombinant photoprotein aequorin (AEQ) as a Ca(2+) sensor has gained popularity with recent advances in instrumentation. The requirement of the AEQ system for cells expressing both the photoprotein and the GPCR target of interest has necessitated the labor-intensive development of cell lines stably expressing both proteins. With the goal of streamlining this process, transient transfections were used to either (1) introduce AEQ into cells stably expressing the GPCR of interest or (2) introduce the GPCR into cells stably expressing the AEQ protein, employing the human muscarinic M(1) receptor as a model system. Robust results were obtained from cryopreserved cells prepared by both strategies, yielding agonist and antagonist pharmacology in good agreement with literature values. Good reproducibility was observed between multiple transient transfection events. These results indicate that transient transfection is a viable and efficient method for production of cellular reagents for use in AEQ assays.


Subject(s)
Aequorin/chemistry , Receptors, G-Protein-Coupled/metabolism , Acetylcholine/metabolism , Aequorin/genetics , Aequorin/metabolism , Animals , CHO Cells , Calcium/metabolism , Cricetinae , Cricetulus , Cryopreservation , Digitonin/metabolism , Humans , Oxotremorine/metabolism , Receptor, Muscarinic M1/agonists , Receptor, Muscarinic M1/antagonists & inhibitors , Receptor, Muscarinic M1/metabolism , Receptors, G-Protein-Coupled/genetics , Transfection
6.
J Biomol Screen ; 14(10): 1185-94, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19841468

ABSTRACT

Glycine transporter (GlyT1) function is typically measured by radiolabeled glycine uptake using lysis methods or scintillation proximity assays (SPAs), which have limited throughput. This study shows the adaptation of the standard cell lysis method to a screening assay with improved throughput and assay characteristics. The assay takes advantage of the 384-well format, standard laboratory automation, and cryopreserved CHO-K1 cells stably overexpressing human GlyT1a transporter (CHO-K1/hGlyT1a) that were validated and banked in advance of screening. The assay was evaluated for the time course of glycine uptake, K(m), V(max), Z' factor analysis, and IC(50) value determination with reference GlyT1 inhibitors. Screening of 118,000 compounds at 10 microM identified 4556 compounds (3.9%) as inhibitors. Positive compounds (>50% inhibition) were retested in the assay at 4 inhibitor concentrations. Compounds demonstrating greater than 40% inhibition at 10 microM were considered as confirmed positives, yielding a 68% confirmation rate from the original screen. To eliminate compounds that nonspecifically inhibited glycine uptake, IC(50) values were determined in both GlyT1 and GlyT2 assays, and those compounds that inhibited GlyT2 were removed from consideration. The screening campaign identified 300 small molecules as selective GlyT1 inhibitors for lead optimization, demonstrating the utility of this cost-effective method.


Subject(s)
Biological Assay/methods , Glycine Plasma Membrane Transport Proteins/antagonists & inhibitors , Membrane Transport Modulators/analysis , Membrane Transport Modulators/pharmacology , Animals , CHO Cells , Cricetinae , Cricetulus , Glycine/metabolism , Humans , Kinetics , Reference Standards , Tritium/metabolism
7.
Curr Protoc Pharmacol ; Chapter 2: Unit2.1, 2006 Jan.
Article in English | MEDLINE | ID: mdl-21953400

ABSTRACT

Receptor- and ion channel-coupled signal transduction mechanisms are downstream communication processes used by regulatory molecules to modulate the essential cell processes of growth, differentiation and survival. Knowledge of signal transduction processes has dramatically increased in the past decade, and the basic principles of intracellular signaling are now quite well established. Cell signaling in higher organisms is a major, highly complex, phenomena that occupies a central position in current biomedical research. The complex machinery of intracellular signaling also has the potential to provide a wealth of novel drug discovery targets, from protein kinases, adaptor proteins, lipases, and cytoskeletal proteins, to nuclear effectors. This overview describes common features of cellular signaling pathways, including their interactions and responses to environmental stimuli. In particular, the overview focuses on the regulation of signaling pathways by protein functional-domain interactions as well as the intracellular proteins that mediate signal transduction.


Subject(s)
Signal Transduction/physiology , Adenylyl Cyclases/physiology , Animals , Calcium/metabolism , Eicosanoids/physiology , Guanylate Cyclase/physiology , Heterotrimeric GTP-Binding Proteins/physiology , Humans , Phospholipases A2/physiology , Potassium/metabolism , Type C Phospholipases/physiology
8.
J Biol Chem ; 277(16): 13827-30, 2002 Apr 19.
Article in English | MEDLINE | ID: mdl-11842095

ABSTRACT

The Ras-related protein, activator of G-protein signaling 1 (AGS1) or Dexras1, interacts with G(i)/G(o)alpha and activates heterotrimeric G-protein signaling systems independent of a G-protein-coupled receptor (GPCR). As an initial approach to further define the cellular role of AGS1 in GPCR signaling, we determined the influence of AGS1 on the regulation of G(betagamma)-regulated inwardly rectifying K(+) channel (GIRK) current (I(ACh)) by M(2)-muscarinic receptor (M(2)-MR) in Xenopus oocytes. AGS1 expression inhibited receptor-mediated current activation by >80%. Mutation of a key residue (G31V) within the G(1) domain involved in nucleotide binding for Ras-related proteins eliminated the action of AGS1. The inhibition of I(ACh) was not overcome by increasing concentrations of the muscarinic agonist acetylcholine but was progressively lost upon injection of increasing amounts of M(2)-MR cRNA. These data suggest that AGS1 may antagonize GPCR signaling by altering the pool of heterotrimeric G-proteins available for receptor coupling and/or disruption of a preformed signaling complex. Such regulation would be of particular importance for those receptors that exist precoupled to heterotrimeric G-protein and for receptors operating within signaling complexes.


Subject(s)
GTP-Binding Proteins/chemistry , GTP-Binding Proteins/metabolism , Signal Transduction , ras Proteins/metabolism , Acetylcholine/metabolism , Animals , Dose-Response Relationship, Drug , Electrophysiology , Mutation , Protein Binding , RNA, Complementary/metabolism , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...