Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Article in English | MEDLINE | ID: mdl-38048026

ABSTRACT

BACKGROUND: The war in Ukraine has led to significant migration to neighboring countries, raising public health concerns. Notable tuberculosis (TB) incidence rates in Ukraine emphasize the immediate requirement to prioritize approaches that interrupt the spread and prevent new infections. METHODS: We conducted a prospective genomic surveillance study to assess migration's impact on TB epidemiology in the Czech Republic and Slovakia. Mycobacterium tuberculosis isolates from Ukrainian war refugees and migrants, collected from September 2021 to December 2022 were analyzed alongside 1574 isolates obtained from Ukraine, the Czech Republic, and Slovakia. RESULTS: Our study revealed alarming results, with historically the highest number of Ukrainian tuberculosis patients detected in the host countries. The increasing number of cases of multidrug-resistant TB, significantly linked with Beijing lineage 2.2.1 (p < 0.0001), also presents substantial obstacles to control endeavors. The genomic analysis identified the three highly related genomic clusters, indicating the recent TB transmission among migrant populations. The largest clusters comprised war refugees diagnosed in the Czech Republic, TB patients from various regions of Ukraine, and incarcerated individuals diagnosed with pulmonary TB specialized facility in the Kharkiv region, Ukraine, pointing to a national transmission sequence that has persisted for over 14 years. CONCLUSIONS: The data showed that most infections were likely the result of reactivation of latent disease or exposure to TB before migration rather than recent transmission occurring within the host country. However, close monitoring, appropriate treatment, careful surveillance, and social support are crucial in mitigating future risks, though there is currently no evidence of local transmission in EU countries.

3.
JAC Antimicrob Resist ; 5(5): dlad108, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37799267

ABSTRACT

Objectives: Rapidly diagnosing drug-resistant TB is crucial for improving treatment and transmission control. WGS is becoming increasingly accessible and has added value to the diagnosis and treatment of TB. The aim of the study was to perform WGS to determine the rate of false-positive results of phenotypic drug susceptibility testing (pDST) and characterize the molecular mechanisms of resistance and transmission of mono- and polyresistant Mycobacterium (M.) tuberculosis. Methods: WGS was performed on 53 monoresistant and 25 polyresistant M. tuberculosis isolates characterized by pDST. Sequencing data were bioinformatically processed to infer mutations encoding resistance and determine the origin of resistance and phylogenetic relationship between isolates studied. Results: The data showed the variable sensitivity and specificity of WGS in comparison with pDST as the gold standard: isoniazid 92.7% and 92.3%; streptomycin 41.9% and 100.0%; pyrazinamide 15% and 94.8%; and ethambutol 75.0% and 98.6%, respectively. We found novel mutations encoding resistance to streptomycin (in gidB) and pyrazinamide (in kefB). Most isolates belonged to lineage 4 (80.1%) and the overall clustering rate was 11.5%. We observed lineage-specific gene variations encoding resistance to streptomycin and pyrazinamide. Conclusions: This study highlights the clinical potential of WGS in ruling out false-positive drug resistance following phenotypic or genetic drug testing, and recommend this technology together with the WHO catalogue in designing an optimal individualized treatment regimen and preventing the development of MDR TB. Our results suggest that resistance is primarily developed through spontaneous mutations or selective pressure.

4.
Sci Rep ; 12(1): 7149, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35505072

ABSTRACT

The emergence and spread of resistant tuberculosis (TB) pose a threat to public health, so it is necessary to diagnose the drug-resistant forms in a clinically short time frame and closely monitor their transmission. In this study, we carried out a first whole genome sequencing (WGS)-based analysis of multidrug resistant (MDR) M. tuberculosis strains to explore the phylogenetic lineages diversity, drug resistance mechanisms, and ongoing transmission chains within the country. In total, 65 isolates phenotypically resistant to at least rifampicin and isoniazid collected in the Czech Republic in 2005-2020 were enrolled for further analysis. The agreement of the results obtained by WGS with phenotypic drug susceptibility testing (pDST) in the determination of resistance to isoniazid, rifampicin, pyrazinamide, streptomycin, second-line injectables and fluoroquinolones was more than 80%. Phylogenetic analysis of WGS data revealed that the majority of MDR M. tuberculosis isolates were the Beijing lineage 2.2.1 (n = 46/65; 70.8%), while the remaining strains belonged to Euro-American lineage. Cluster analysis with a predefined cut-off distance of less than 12 single nucleotide polymorphisms between isolates showed 19 isolates in 6 clusters (clustering rate 29.2%), located mainly in the region of the capital city of Prague. This study highlights the utility of WGS as a high-resolution approach in the diagnosis, characterization of resistance patterns, and molecular-epidemiological analysis of resistant TB in the country.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Czech Republic/epidemiology , Drug Resistance, Multiple, Bacterial/genetics , Genotype , Humans , Isoniazid , Microbial Sensitivity Tests , Mutation , Phylogeny , Rifampin , Tuberculosis/drug therapy , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , Whole Genome Sequencing/methods
5.
J Clin Tuberc Other Mycobact Dis ; 26: 100292, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35005254

ABSTRACT

OBJECTIVE: The resistance of Mycobacterium (M.) tuberculosis to antituberculosis drugs poses a major threat to global public health. Whole genome sequencing (WGS) is an increasingly preferred method in the diagnostics and monitoring of the transmission dynamics of resistant forms of tuberculosis (TB). The aim of the study was to, for the first time, use the sequencing-based analysis to study the transmission and resistance patterns of a systematic and recent collection of extensively drug resistant (XDR) and multidrug resistant tuberculosis (MDR-TB) isolates and to expand our knowledge about drug resistant (DR) TB epidemiological dynamics in Slovakia. DESIGN: A total of 495 patients with pulmonary TB, who were referred to National Reference Laboratory for Mycobacteriology (Vysné Hágy, Slovakia) in the years 2018-2019, were studied. Out of the total of 495 patients, 4 XDR-TB (0.8%) and 8 (1.6%) MDR-TB isolates were identified by conventional drug susceptibility testing on Löwenstein-Jensen solid medium and subjected to whole genome sequencing. Sequencing data were evaluated for molecular-epidemiological analysis and identification of resistance patterns. RESULTS: Phylogenetic and cluster analysis showed extensive recent transmission events and the predominance of Euro-American lineage 4.7 in Slovakia. However, phylogenetic analysis revealed the circulation of several lineages that originally occurred in Eastern European countries. Resistance patterns for first- and second-line antituberculosis drugs characterized by whole genome sequencing were in high concordance with the results of phenotypic drug susceptibility testing. CONCLUSION: Forty percent of at least MDR-TB isolates were not genetically linked, indicating that appropriate measures should be taken to monitor and prevent the spread of drug-resistant tuberculosis within the country as well as in other regions.

6.
Mol Biol Rep ; 42(8): 1257-64, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25749814

ABSTRACT

Eukaryotic translation elongation factor 1 alpha (EEF1A) plays a key role in protein synthesis. In higher vertebrates EEF1A occurs in two isoforms, EEF1A1 and EEF1A2, encoded by distinct genes. The purpose of this study was to compare the two porcine genes as for the genomic sequence, gene organization and mRNA expression in different tissues, as well as to search for polymorphism and chromosomal assignment. Standard methods of DNA and mRNA analysis were used. We determined the complete genomic sequence of the porcine EEF1A1 and EEF1A2 genes. The two genes differ in the lengths of transcription units (3102 and 8588 bp, respectively), but have similar genomic organization and their coding sequences are highly similar (78% identity of coding sequences and 92.4% identity of amino acid sequences). Several polymorphisms in the two genes were detected. EEF1A1 and EEF1A2 were mapped to SSC1p11.1 and SSC17q23.3, respectively. mRNA of EEF1A1 was expressed in all studied tissues (the highest expression was in 44-day fetal muscle and low expression in adult liver and brain), while EEF1A2 was expressed only in skeletal-muscle, tongue, heart, diaphragm and brain tissues. EEF1A2 was not expressed in fetal muscle tissue (44 days). In this paper results are provided on genomic sequences, genomic organization, polymorphism, chromosomal assignment and spatial and temporal expressions of the porcine EEF1A1 and EEF1A2 genes. Novel polymorphisms were described in both genes. Porcine EEF1A2 was studied for the first time.


Subject(s)
Peptide Elongation Factor 1/genetics , Peptide Elongation Factor 2/genetics , Polymorphism, Genetic , Sus scrofa/genetics , Animals , Base Sequence , Gene Expression , Gene Expression Profiling , Genomics , Molecular Sequence Data , Organ Specificity , Sequence Analysis, DNA , Sus scrofa/metabolism
7.
Vet Ophthalmol ; 17(1): 76-8, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23998563

ABSTRACT

Cone-rod dystrophy is a progressive inherited retinal degenerative disorder that occurs in humans and dogs. The deletion in the nephronophthisis 4 (NPHP4) gene was established as a causative mutation in standard wire-haired Dachshunds. We analyzed all varieties of Dachshunds from the Czech Republic and five other dog breeds and found that the deletion in the NPHP4 (in heterozygous state) is present not only in standard-, but also in miniature wire-haired Dachshunds, but not in other varieties of Dachshunds or in other breeds.


Subject(s)
Dog Diseases/genetics , Gene Deletion , Kidney Diseases, Cystic/genetics , Retinitis Pigmentosa/veterinary , Animals , Dogs , Gene Expression Regulation/physiology , Genetic Predisposition to Disease , Kidney Diseases, Cystic/metabolism , Retinitis Pigmentosa/genetics
8.
Genet Sel Evol ; 44: 13, 2012 Apr 17.
Article in English | MEDLINE | ID: mdl-22510482

ABSTRACT

BACKGROUND: Independent studies have shown that several single nucleotide polymorphisms (SNP) in the human FTO (fat mass and obesity associated) gene are associated with obesity. SNP have also been identified in the pig FTO gene, among which some are associated with selected fat-deposition traits in F2 crosses and commercial populations. In this study, using both commercial pig populations and an experimental Meishan × Pietrain F2 population, we have investigated the association between one FTO SNP and several growth and carcass traits. Association analyses were performed with the FTO polymorphism either alone or in combination with polymorphisms in flanking loci. METHODS: SNP (FM244720:g.400C>G) in exon 3 of porcine FTO was genotyped by PCR-RFLP and tested for associations with some growth, carcass and fat-related traits. Proportions of genetic variance of four pig chromosome 6 genes (FTO, RYR1, LIPE and TGFB1) on selected traits were evaluated using single- and multi-locus models. RESULTS: Linkage analysis placed FTO on the p arm of pig chromosome 6, approximately 22 cM from RYR1. In the commercial populations, allele C of the FTO SNP was significantly associated with back fat depth and allele G with muscling traits. In the Meishan × Pietrain F2 pigs, heterozygotes with allele C from the Pietrain sows and allele G from the Meishan boar were more significantly associated with fat-related traits compared to homozygotes with allele G from the Pietrain and allele G from the Meishan breed. In single- and multi-locus models, genes RYR1, TGFB1 and FTO showed high associations. The contribution in genetic variance from the polymorphism in the FTO gene was highest for back fat depth, meat area on the musculus longissimus lumborum et thoracis tissues and metabolite glucose-6-phosphate dehydrogenase. CONCLUSIONS: Our results show that in pig, FTO influences back fat depth in the commercial populations, while in the Meishan × Pietrain F2 pigs with a CG genotype, heterosis occurs for several fat-related traits.


Subject(s)
Body Composition/genetics , Dioxygenases/genetics , Polymorphism, Single Nucleotide , Sus scrofa/genetics , Adipose Tissue/anatomy & histology , Animals , Back/anatomy & histology , Chromosome Mapping , Gene Frequency , Genetic Association Studies , Genetic Loci , Linkage Disequilibrium , Models, Genetic , Ryanodine Receptor Calcium Release Channel/genetics , Sus scrofa/anatomy & histology , Sus scrofa/growth & development , Transforming Growth Factor beta1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...