Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
Nanoscale ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39258969

ABSTRACT

Nowadays, in the field of environmental protection, a huge effort is focused on efficient and sustainable processes to treat wastewaters. The current study emphasizes the photocatalytic performance of TiNbOx, a nano-heterostructure material derived from the oxidation of (Ti0.75Nb0.25)2CTx MXene. The TiNbOx nano-heterostructure exhibited remarkable performance in the degradation of caffeine (CAF) and sulfamethoxazole (SMX) under UVA irradiation in the presence of peroxymonosulfate (PMS). Under optimal conditions, 0.2 g L-1 of TiNbOx, 0.5 mM PMS and 50 µM concentration of pollutants and natural pH of deionized water, we observed a complete degradation of SMX and 91% degradation of CAF. Scavenging studies provided evidence for the involvement of ˙OH and SO4˙- in the degradation of the pollutants, which was also supported by indirect techniques of electron paramagnetic resonance (EPR) spectroscopy. The degradation pathway of the pollutants was analyzed by liquid chromatography-mass spectrometry (LC-MS) and several mechanisms were suggested including hydroxylation and isoxazole ring-opening reactions. In addition, X-ray photoelectron spectroscopy (XPS) supported the proposed degradation mechanism. The reusability test underscored the high stability and efficiency of TiNbOx. Moreover, the significance of this research was emphasized by conducting degradation studies in tap water (TW) and tertiary effluents of the wastewater (WW) treatment plant in Bratislava. Under optimal conditions, 49% and 30% CAF were degraded in TW and WW, respectively, after 12 hours of reaction. For SMX, 68% and 67% degradations were obtained in TW and WW, respectively.

2.
Biomolecules ; 10(9)2020 08 20.
Article in English | MEDLINE | ID: mdl-32825480

ABSTRACT

A series of four water-soluble salicylaldehyde thiosemicarbazones with a positively charged trimethylammonium moiety ([H2LR]Cl, R = H, Me, Et, Ph) and four copper(II) complexes [Cu(HLR)Cl]Cl (1-4) were synthesised with the aim to study (i) their antiproliferative activity in cancer cells and, (ii) for the first time for thiosemicarbazones, the interaction with membrane transport proteins, specifically organic cation transporters OCT1-3. The compounds were comprehensively characterised by analytical, spectroscopic and X-ray diffraction methods. The highest cytotoxic effect was observed in the neuroblastoma cell line SH-5YSY after 24 h exposure and follows the rank order: 3 > 2 > 4 > cisplatin > 1 >>[H2LR]Cl. The copper(II) complexes showed marked interaction with OCT1-3, comparable to that of well-known OCT inhibitors (decynium 22, prazosin and corticosterone) in the cell-based radiotracer uptake assays. The work paves the way for the development of more potent and selective anticancer drugs and/or OCT inhibitors.


Subject(s)
Aldehydes/pharmacology , Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Copper/pharmacology , Organic Cation Transport Proteins/antagonists & inhibitors , Thiosemicarbazones/pharmacology , Aldehydes/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line , Cell Proliferation/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Copper/chemistry , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Structure , Organic Cation Transport Proteins/metabolism , Thiosemicarbazones/chemistry
3.
Materials (Basel) ; 13(13)2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32645966

ABSTRACT

Graphitic carbon nitride (g-C3N4) is a conjugated polymer, which recently drew a lot of attention as a metal-free and UV and visible light responsive photocatalyst in the field of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability and earth-abundant nature. In the present work, bulk g-C3N4 was synthesized by thermal decomposition of melamine. This material was further exfoliated by thermal treatment. S-doped samples were prepared from thiourea or further treatment of exfoliated g-C3N4 by mesylchloride. Synthesized materials were applied for photocatalytic removal of air pollutants (acetaldehyde and NOx) according to the ISO 22197 and ISO 22197-1 methodology. The efficiency of acetaldehyde removal under UV irradiation was negligible for all g-C3N4 samples. This can be explained by the fact that g-C3N4 under irradiation does not directly form hydroxyl radicals, which are the primary oxidation species in acetaldehyde oxidation. It was proved by electron paramagnetic resonance (EPR) spectroscopy that the dominant species formed on the irradiated surface of g-C3N4 was the superoxide radical. Its production was responsible for a very high NOx removal efficiency not only under UV irradiation (which was comparable with that of TiO2), but also under visible irradiation.

4.
Materials (Basel) ; 13(5)2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32164261

ABSTRACT

We describe the successful possibility of the immobilization of a photocatalyst on foam, which is beneficial from a practical point of view. An immobilized photocatalyst is possible for use in a continuous experiment and can be easily separated from the reactor after the reaction concludes. Parent TiO2, La/TiO2, and Nd/TiO2 photocatalysts (containing 0.1 wt.% of lanthanide) were prepared by the sol-gel method and immobilized on Al2O3/SiO2 foam (VUKOPOR A) by the dip-coating method. The photocatalysts were investigated for the photocatalytic hydrogen generation from an aqueous ammonia solution under UVA light (365 nm). The evolution of hydrogen was compared with photolysis, which was limited to zero. The higher hydrogen generation was observed in the presence of 0.1 wt.% La/TiO2 than in 0.1 wt.% Nd/TiO2. This is, besides other things, related to the higher level of the conduction band, which was observed for 0.1 wt.% La/TiO2. The higher conduction band's position is more effective for hydrogen production from ammonia decomposition.

5.
J Mol Model ; 22(10): 251, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27686562

ABSTRACT

Protonation in the two-electron/two-proton reduction processes of 2,6-dichlorophenolindophenolate (DCIP) is investigated combining density functional theory (DFT) and molecular dynamics (MD) methods. DCIP (anion), DCIP•- (radical anion), and DCIP2- (dianion) are considered, including the electronic structure analysis from the prospective of quantum theory of atoms and molecules (QTAIM). It is shown that oxygen on the indophenolate moiety and nitrogen are the first and/or the second proton acceptor sites and their energetic order depends on the total charge of the system. MD simulations of differently charged species interacting with the solvent molecules have been performed for methanol, water, and oxonium cation (H3O+). Methanol and water molecules are found to form only hydrogen bonds with the solute irrespective of its charge. The calculated pKa values show that the imino group of DCIPH- is a weaker acid than water. While in the case of DCIP (and DCIP•-) plus oxonium cation, proton transfer from the solvent to the solute was evidenced for both aforementioned acceptor sites. In addition, MD simulations of bulks containing 15 and 43 molecules of water around the DCIP molecule have been performed, revealing the formation of 2-4 hydrogen bonds. Graphical Abstract 2,6-Dichlorophenolindophenolate interacts with solvent molecules (water, oxonium cation and methanol). Hydrogen transfer and electronic structure are studied by DFT and molecular dynamics methods.

6.
Molecules ; 20(8): 14139-54, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26248070

ABSTRACT

Three new hydrazide and five new hydrazonoyl derivatives were synthesized. The chemical structures of these compounds were confirmed by 1H-NMR, IR spectroscopy and elemental analysis. The prepared compounds were tested for their activity to inhibit photosynthetic electron transport in spinach chloroplasts and growth of the green algae Chlorella vulgaris. IC50 values of these compounds varied in wide range, from a strong to no inhibitory effect. EPR spectroscopy showed that the active compounds interfered with intermediates Z•/D•, which are localized on the donor side of photosystem II. Fluorescence spectroscopy suggested that the mechanism of inhibitory action of the prepared compounds possibly involves interactions with aromatic amino acids present in photosynthetic proteins.


Subject(s)
Herbicides/chemical synthesis , Herbicides/toxicity , Hydrazines/chemical synthesis , Hydrazines/toxicity , Hydrazones/chemical synthesis , Hydrazones/toxicity , Chlorella/drug effects , Chlorella/growth & development , Chloroplasts/drug effects , Chloroplasts/metabolism , Electron Spin Resonance Spectroscopy , Electron Transport/drug effects , Herbicides/chemistry , Hydrazines/chemistry , Hydrazones/chemistry , Inhibitory Concentration 50 , Photosynthesis/drug effects , Spectrometry, Fluorescence , Spinacia oleracea/drug effects , Spinacia oleracea/metabolism
7.
J Inorg Biochem ; 150: 160-73, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26116423

ABSTRACT

Copper(II) complexes with fluoroquinolones in the presence of the nitrogen donor heterocyclic ligands 1,10-phenanthroline have been considered in detail. The phenanthroline moiety was introduced into the ligand environment with the aim to determine whether the nuclease activity is feasible. All suitable X-ray structures of the complexes under study reveal a distorted square pyramidal coordination geometry for Cu(II) atom. The conformational and spectroscopic (FT-IR and UV-visible) behavior has been analyzed and has been interpreted with respect to B3LYP/6-311G* calculations including molecular dynamics. The ability of the complexes to cleave DNA was studied by agarose gel electrophoresis with plasmid DNA pBSK+. The results have confirmed that the complexes under study behave as the chemical nucleases. Nuclease like activity in the absence of hydrogen peroxide allows us to deduce an interaction of the complexes with the DNA resulting in the conversion of supercoiled circular DNA to the nicked form. The DNA cleavage activity enhanced by the presence of hydrogen peroxide demonstrates the participation of reactive oxygen species, such as superoxide radical anions and hydroxyl radicals which presence was confirmed independently using the standard radical scavenging agents. It has been suggested that the radical formation through the Fenton/Haber-Weiss reaction is mediated by the redox cycling mechanisms with the participation of cupric/cuprous ions. Cytotoxic activity was evaluated as the 50% cytotoxic concentration (CC50). The potential effects of tested compounds on replication of murine gammaherpesvirus 68 (MHV-68) under in vitro conditions were also evaluated. However, no antiviral activity against MHV-68 was observed.


Subject(s)
Antiviral Agents/pharmacology , Coordination Complexes/pharmacology , Copper/chemistry , DNA Damage/drug effects , Fluoroquinolones/pharmacology , 3T3 Cells , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Antiviral Agents/toxicity , Chlorocebus aethiops , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/toxicity , Crystallography, X-Ray , DNA Cleavage/drug effects , Fluoroquinolones/chemical synthesis , Fluoroquinolones/chemistry , Fluoroquinolones/toxicity , Mice , Models, Chemical , Molecular Conformation , Rhadinovirus/drug effects , Spectrophotometry, Infrared , Vero Cells
8.
Molecules ; 19(11): 17279-304, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25353381

ABSTRACT

The radical intermediates formed upon UVA irradiation of titanium dioxide suspensions in aqueous and non-aqueous environments were investigated applying the EPR spin trapping technique. The results showed that the generation of reactive species and their consecutive reactions are influenced by the solvent properties (e.g., polarity, solubility of molecular oxygen, rate constant for the reaction of hydroxyl radicals with the solvent). The formation of hydroxyl radicals, evidenced as the corresponding spin-adducts, dominated in the irradiated TiO2 aqueous suspensions. The addition of 17O-enriched water caused changes in the EPR spectra reflecting the interaction of an unpaired electron with the 17O nucleus. The photoexcitation of TiO2 in non-aqueous solvents (dimethylsulfoxide, acetonitrile, methanol and ethanol) in the presence of 5,5-dimethyl-1-pyrroline N-oxide spin trap displayed a stabilization of the superoxide radical anions generated via electron transfer reaction to molecular oxygen, and various oxygen- and carbon-centered radicals from the solvents were generated. The character and origin of the carbon-centered spin-adducts was confirmed using nitroso spin trapping agents.


Subject(s)
Hydroxyl Radical/chemistry , Superoxides/chemistry , Titanium/chemistry , Acetonitriles/chemistry , Carbon/chemistry , Dimethyl Sulfoxide/chemistry , Electrons , Ethanol/chemistry , Methanol/chemistry , Oxides/chemistry , Oxygen/chemistry , Solubility , Solvents/chemistry , Spin Trapping/methods
9.
J Phys Chem A ; 118(40): 9540-51, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25188903

ABSTRACT

Biological activity, functionality, and synthesis of (fluoro)quinolones is closely related to their precursors (for instance 3-fluoroanilinoethylene derivatives) (i.e., their functional groups, conformational behavior, and/or electronic structure). Herein, the theoretical study of 3-fluoroanilinoethylene derivatives is presented. Impact of substituents (acetyl, methyl ester, and ethyl ester) on the conformational analysis and the spectral behavior is investigated. The B3LYP/6-311++G** computational protocol is utilized. It is found that the intramolecular hydrogen bond N-H···O is responsible for the energetic preference of anti (a) conformer (anti position of 3-fluoroanilino group with respect to the C═C double bond). The Boltzmann ratios of the conformers are related to the differences of the particular dipole moments and/or their dependence on the solvent polarity. The studied acetyl, ethyl ester, and methyl ester substituted fluoroquinolone precursors prefer in the solvent either EZa, ZZa, or both conformers equally, respectively. In order to understand the degree of freedom of rotation of the trans ethyl ester group, B3LYP/6-311G** molecular dynamic simulations were carried out. Vibrational frequencies, electron transitions, as well as NMR spectra are analyzed with respect to conformational analysis, including the effect of the substituent. X-ray structures of the precursors are presented and compared with the results of the conformational analysis.


Subject(s)
Anti-Bacterial Agents/chemistry , Electrons , Fluoroquinolones/chemistry , Crystallography, X-Ray , Esters , Hydrogen Bonding , Molecular Conformation , Stereoisomerism
10.
Molecules ; 19(8): 12078-98, 2014 Aug 12.
Article in English | MEDLINE | ID: mdl-25120058

ABSTRACT

10-Ethyl-7-oxo-7,10-dihydropyrido[2,3-f]quinoxaline derivatives, synthesized as promising biologically/photobiologically active compounds were characterized by UV/vis, FT-IR and fluorescent spectroscopy. Photoinduced processes of these derivatives were studied by EPR spectroscopy, monitoring in situ the generation of reactive intermediates upon UVA (λmax=365 nm) irradiation. The formation of reactive oxygen species and further oxygen- and carbon-centered radical intermediates was detected and possible reaction routes were suggested. To quantify the investigated processes, the quantum yields of the superoxide radical anion spin-adduct and 4-oxo-2,2,6,6-tetramethylpiperidine N-oxyl generation were determined, reflecting the activation of molecular oxygen by the excited state of the quinoxaline derivative.


Subject(s)
Quinoxalines/chemistry , Reactive Oxygen Species/chemistry , Superoxides/chemistry , Electron Spin Resonance Spectroscopy , Oxygen/chemistry , Spectroscopy, Fourier Transform Infrared , Spin Labels , Spin Trapping , Ultraviolet Rays
11.
Photochem Photobiol ; 87(1): 32-44, 2011.
Article in English | MEDLINE | ID: mdl-21073477

ABSTRACT

Novel 7-substituted 6-oxo-6,9-dihydro[1,2,5]selenadiazolo[3,4-h]quinoline (SeQ(1-6)) and 8-substituted 9-oxo-6,9-dihydro[1,2,5]selenadiazolo[3,4-f ]quinoline derivatives (SeQN(1-5)) with R(7), R(8) =H, COOC(2) H(5), COOCH(3), COOH, COCH(3) or CN were synthesized and their spectral characteristics were obtained by UV/Vis spectroscopy. Ultraviolet A photoexcitation of the selenadiazoloquinolones in dimethylsulfoxide or acetonitrile resulted in the formation of paramagnetic species coupled with molecular oxygen activation generating the superoxide radical anion or singlet oxygen, evidenced by electron paramagnetic resonance spectroscopy. The cytotoxic/photocytotoxic impact of selenadiazoloquinolones on murine and human cancer cell lines was demonstrated using the derivative SeQ5 (with R(7)=COCH(3)).


Subject(s)
Quinolones/chemistry , Singlet Oxygen/chemistry , Superoxides/chemistry , Animals , Cell Line, Tumor , Electron Spin Resonance Spectroscopy , Humans , Mice , Spectrophotometry, Ultraviolet , Ultraviolet Rays
12.
Mol Biotechnol ; 37(1): 48-51, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17914163

ABSTRACT

Camptothecin (CPT) is an anticancer drug that inhibits topoisomerase I (Topo I) by forming a ternary DNA-CPT-Topo I complex. However, it has also been shown that UVA-irradiated CPT in the absence of Topo I produces significant DNA damage to cancer cells. In this work, we explored and identified free radicals generated in these processes. From the low-temperature EPR spectrum of Cu(II)-CPT complex, a proximity between Cu(II) ion and 20-hydroxy group of lactone E ring of CPT is proposed. Upon irradiation (lambda = 365 nm) of the Cu(II)-CPT complex in de-oxygenated dimethylsulfoxide (DMSO), the EPR signal of Cu(II) measured in situ at room temperature shows formal first-order exponential decay with a formal half-life of 11 min. By the use of a specific Cu(I) chelating agent, neocuproine, it was shown that, during this process, Cu(II) is reduced to Cu(I). The loss in EPR signal intensity of the Cu(II)-CPT complex upon irradiation is accompanied by the appearance of a new EPR signal at g approximately 2.0022. Application of the spin trap nitrosodurene (ND) revealed that the main radical product formed upon continuous irradiation of CPT in DMSO solutions is the hydroxyl radical (trapped in DMSO as the *CH3 adduct) and superoxide radical. Application of 2,2,6,6-tetramethyl-4-piperidinol has revealed that irradiation of CPT in aerated DMSO solution also leads to formation of singlet oxygen (1O2). Our spectroscopic experiments indicate that CPT is a promising photosensitizer and that radicals and singlet oxygen generated upon illumination play a central role in DNA cleavage and in the induction of apoptosis in cancer cells.


Subject(s)
Camptothecin/chemistry , Camptothecin/radiation effects , Copper/chemistry , Photochemotherapy , Photosensitizing Agents/chemistry , Photosensitizing Agents/radiation effects , Camptothecin/pharmacology , DNA/chemistry , DNA/drug effects , DNA Cleavage , Electron Spin Resonance Spectroscopy , Free Radicals/analysis , Humans , Photochemistry , Photosensitizing Agents/pharmacology , Ultraviolet Rays
13.
J Photochem Photobiol B ; 79(2): 121-34, 2005 May 13.
Article in English | MEDLINE | ID: mdl-15878117

ABSTRACT

Commercial sunscreen products containing titanium dioxide were irradiated with lambda>300 nm and the formation of oxygen- (.OH, O2.-/.OOH) and carbon-centered radicals was monitored by EPR spectroscopy and spin trapping technique using 5,5-dimethyl-1-pyrroline N-oxide, alpha-phenyl-N-tert-butylnitrone (PBN), alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone as spin traps, and free nitroxide radical 4-hydroxy-2,2,6,6-tetramethylpiperidine N-oxyl. The photoinduced production of singlet oxygen was shown by 4-hydroxy-2,2,6,6-piperidine. The generation of reactive oxygen radical species upon irradiation of sunscreens significantly depends on their composition, as the additives present (antioxidants, radical-scavengers, solvents) can transform the reactive radicals formed to less harmful products. The continuous in situ irradiation of titanium dioxide powder, recommended for cosmetic application, investigated in different solvents (water, dimethyl sulfoxide, isopropyl myristate) resulted in the generation of oxygen-centered reactive radical species (superoxide anion radical, hydroxyl and alkoxyl radicals).


Subject(s)
Reactive Oxygen Species/chemistry , Sunscreening Agents/chemistry , Titanium/chemistry , Catalysis , Cyclic N-Oxides/chemistry , Electron Spin Resonance Spectroscopy , Molecular Structure , Myristates , Photochemistry , Spectroscopy, Fourier Transform Infrared , Spin Labels , Water
14.
Phytother Res ; 18(8): 640-6, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15476305

ABSTRACT

Protoberberinium salts, i.e. berberine (I), palmatine (II) and jatrorrhizine (III) prepared from Mahonia aquifolium (Pursh) Nutt. belong to isoquinoline alkaloids possessing interesting biological activity (e.g. antibacterial, antimalarial, antitumor). The characteristic UV/Vis absorption band maxima of I-III iodide salts were found in regions 350 and 425 nm in dimethylsulfoxide (DMSO) and ethanol solvents, and were only negligibly influenced by substitution changes on the C-2 and C-3 positions. The fluorescence intensity of protoberberinium salts monitored in ethanol solutions was significantly lowered by iodide counter-ions, and decreased in the order berberine > palmatine > jatrorrhizine. EPR spectroscopy supplied evidence of the formation of super-oxide anion radicals and singlet oxygen upon irradiation of berberine in oxygenated DMSO solvent. The photochemical generation of O(2) (.-) and (1)O(2) in DMSO solutions of palmatine and jatrorrhizine was substantially lower, and probably reflected the replacement of a photolabile methylenedioxy group at C-2 and C-3 positions in the berberine molecule by two methoxy groups in palmatine, and methoxyl (C-2) and hydroxyl (C-3) substitution in jatrorrhizine. Additionally, the powder EPR spectra of protoberberinium iodides I-III measured at 290 K revealed the presence of single-line EPR signals (g(eff) = 2.0044), which were attributed to hydroperoxidic structures produced by the autoxidation process. The photochemical reactions of protoberbenium salts producing reactive oxygen species after UVA excitation should be integrated in biological activity investigations, as well as in their applications in skin disorder treatment.


Subject(s)
Berberine Alkaloids/chemistry , Berberine/analogs & derivatives , Mahonia , Photosensitizing Agents/chemistry , Phytotherapy , Plant Extracts/chemistry , Berberine/chemistry , Electron Spin Resonance Spectroscopy , Free Radicals/chemistry , Humans , Photochemistry
SELECTION OF CITATIONS
SEARCH DETAIL