Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 12(10)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36292084

ABSTRACT

In this paper, the measurement and modeling of optical properties in the terahertz (THz) range of adipose tissue and its components with temperature changes were performed. Spectral measurements were made in the frequency range 0.25-1 THz. The structural models of main triglycerides of fatty acids are constructed using the B3LYP/6-31G(d) method and the Gaussian03, Revision B.03 program. The optical density (OD) of adipose tissue samples decreases as temperature increases, which can be associated mostly with the dehydration of the sample. Some inclusion of THz wave scattering suppression into the OD decrease can also be expected due to refractive index matching provided by free fatty acids released from adipocytes at thermally induced cell lipolysis. It was shown that the difference between the THz absorption spectra of water and fat makes it possible to estimate the water content in adipose tissue. The proposed model was verified on the basis of molecular modeling and a comparison with experimental data for terahertz spectra of adipose tissue during its heating. Knowing the exact percentage of free and bound water in adipose tissue can help diagnose and monitor diseases, such as diabetes, obesity, and cancer.

2.
J Biomed Opt ; 23(9): 1-31, 2018 08.
Article in English | MEDLINE | ID: mdl-30141286

ABSTRACT

Nowadays, dynamically developing optical (photonic) technologies play an ever-increasing role in medicine. Their adequate and effective implementation in diagnostics, surgery, and therapy needs reliable data on optical properties of human tissues, including skin. This paper presents an overview of recent results on the measurements and control of tissue optical properties. The issues reported comprise a brief review of optical properties of biological tissues and efficacy of optical clearing (OC) method in application to monitoring of diabetic complications and visualization of blood vessels and microcirculation using a number of optical imaging technologies, including spectroscopic, optical coherence tomography, and polarization- and speckle-based ones. Molecular modeling of immersion OC of skin and specific technique of OC of adipose tissue by its heating and photodynamic treatment are also discussed.


Subject(s)
Optical Imaging/methods , Skin , Animals , Blood Vessels/chemistry , Blood Vessels/diagnostic imaging , Cerebral Cortex/blood supply , Cerebral Cortex/diagnostic imaging , Collagen/chemistry , Glycerol/chemistry , Humans , Male , Mice , Rabbits , Rats , Refractometry , Skin/blood supply , Skin/diagnostic imaging , Tail/blood supply , Tail/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...