Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Prot ; 86(8): 100117, 2023 08.
Article in English | MEDLINE | ID: mdl-37327999

ABSTRACT

In 2016, the U.S. Food and Drug Administration (FDA), the Centers for Disease Control and Prevention (CDC), and state partners investigated nine Listeria monocytogenes infections linked to frozen vegetables. The investigation began with two environmental L. monocytogenes isolates recovered from Manufacturer A, primarily a processor of frozen onions, that were a match by whole genome sequencing (WGS) to eight clinical isolates and historical onion isolates with limited collection details. Epidemiologic information, product distribution, and laboratory evidence linked suspect food items, including products sourced from Manufacturer B, also a manufacturer of frozen vegetable/fruit products, with an additional illness. The environmental isolates were obtained during investigations at Manufacturers A and B. State and federal partners interviewed ill people, analyzed shopper card data, and collected household and retail samples. Nine ill persons between 2013 and 2016 were reported in four states. Of four ill people with information available, frozen vegetable consumption was reported by three, with shopper cards confirming purchases of Manufacturer B brands. Two identified outbreak strains of L. monocytogenes (Outbreak Strain 1 and Outbreak Strain 2) were a match to environmental isolates from Manufacturer A and/or isolates from frozen vegetables recovered from open and unopened product samples sourced from Manufacturer B; the investigation resulted in extensive voluntary recalls. The close genetic relationship between isolates helped investigators determine the source of the outbreak and take steps to protect public health. This is the first known multistate outbreak of listeriosis in the United States linked to frozen vegetables and highlights the significance of sampling and WGS analyses when there is limited epidemiologic information. Additionally, this investigation emphasizes the need for further research regarding food safety risks associated with frozen foods.


Subject(s)
Foodborne Diseases , Listeria monocytogenes , Listeriosis , Humans , United States , Vegetables , Foodborne Diseases/epidemiology , Food Microbiology , Listeriosis/epidemiology , Disease Outbreaks , Onions
2.
J Food Prot ; 86(6): 100089, 2023 06.
Article in English | MEDLINE | ID: mdl-37024093

ABSTRACT

Foodborne outbreak investigations have traditionally included the detection of a cluster of illnesses first, followed by an epidemiologic investigation to identify a food of interest. The increasing use of whole genome sequencing (WGS) subtyping technology for clinical, environmental, and food isolates of foodborne pathogens, and the ability to share and compare the data on public platforms, present new opportunities to identify earlier links between illnesses and their potential sources. We describe a process called sample-initiated retrospective outbreak investigations (SIROIs) used by federal public health and regulatory partners in the United States. SIROIs begin with an evaluation of the genomic similarity between bacterial isolates recovered from food or environmental samples and clusters of clinical isolates while subsequent and parallel epidemiologic and traceback investigations are initiated to corroborate their connection. SIROIs allow for earlier hypothesis generation, followed by targeted collection of information about food exposures and the foods and manufacturer of interest, to confirm a link between the illnesses and their source. This often leads to earlier action that could reduce the breadth and burden of foodborne illness outbreaks. We describe two case studies of recent SIROIs and present the benefits and challenges. Benefits include insight into foodborne illness attribution, international collaboration, and opportunities for enhanced food safety efforts in the food industry. Challenges include resource intensiveness, variability of epidemiologic and traceback data, and an increasingly complex food supply chain. SIROIs are valuable in identifying connections among small numbers of illnesses that may span significant time periods; detecting early signals for larger outbreaks or food safety issues associated with manufacturers; improving our understanding of the scope of contamination of foods; and identifying novel pathogen/commodity pairs.


Subject(s)
Foodborne Diseases , Humans , United States , Retrospective Studies , Foodborne Diseases/epidemiology , Foodborne Diseases/microbiology , Food Safety , Disease Outbreaks , Food , Food Microbiology
3.
Pediatrics ; 144(4)2019 10.
Article in English | MEDLINE | ID: mdl-31519792

ABSTRACT

BACKGROUND: In 2017, we conducted a multistate investigation to determine the source of an outbreak of Shiga toxin-producing Escherichia coli (STEC) O157:H7 infections, which occurred primarily in children. METHODS: We defined a case as infection with an outbreak strain of STEC O157:H7 with illness onset between January 1, 2017, and April 30, 2017. Case patients were interviewed to identify common exposures. Traceback and facility investigations were conducted; food samples were tested for STEC. RESULTS: We identified 32 cases from 12 states. Twenty-six (81%) cases occurred in children <18 years old; 8 children developed hemolytic uremic syndrome. Twenty-five (78%) case patients ate the same brand of soy nut butter or attended facilities that served it. We identified 3 illness subclusters, including a child care center where person-to-person transmission may have occurred. Testing isolated an outbreak strain from 11 soy nut butter samples. Investigations identified violations of good manufacturing practices at the soy nut butter manufacturing facility with opportunities for product contamination, although the specific route of contamination was undetermined. CONCLUSIONS: This investigation identified soy nut butter as the source of a multistate outbreak of STEC infections affecting mainly children. The ensuing recall of all soy nut butter products the facility manufactured, totaling >1.2 million lb, likely prevented additional illnesses. Prompt diagnosis of STEC infections and appropriate specimen collection aids in outbreak detection. Child care providers should follow appropriate hygiene practices to prevent secondary spread of enteric illness in child care settings. Firms should manufacture ready-to-eat foods in a manner that minimizes the risk of contamination.


Subject(s)
Disease Outbreaks/statistics & numerical data , Escherichia coli Infections/epidemiology , Escherichia coli O157 , Foodborne Diseases/epidemiology , Shiga-Toxigenic Escherichia coli , Soy Foods/microbiology , Adolescent , Aged , Child , Child Day Care Centers/statistics & numerical data , Child, Preschool , Escherichia coli Infections/microbiology , Fast Foods/adverse effects , Fast Foods/microbiology , Female , Food Handling , Foodborne Diseases/microbiology , Hemolytic-Uremic Syndrome/epidemiology , Hemolytic-Uremic Syndrome/microbiology , Humans , Infant , Male , Product Recalls and Withdrawals , Soy Foods/adverse effects , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...