Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Manage ; 46(1): 91-100, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20499233

ABSTRACT

Two decades of uncharacteristically severe wildfires have caused government and private land managers to actively reduce hazardous fuels to lessen wildfire severity in western forests, including riparian areas. Because riparian fuel treatments are a fairly new management strategy, we set out to document their frequency and extent on federal lands in the western U.S. Seventy-four USDA Forest Service Fire Management Officers (FMOs) in 11 states were interviewed to collect information on the number and characteristics of riparian fuel reduction treatments in their management district. Just under half of the FMOs surveyed (43%) indicated that they were conducting fuel reduction treatments in riparian areas. The primary management objective listed for these projects was either fuel reduction (81%) or ecological restoration and habitat improvement (41%), though multiple management goals were common (56%). Most projects were of small extent (93% < 300 acres), occurred in the wildland-urban interface (75%), and were conducted in ways to minimize negative impacts on species and habitats. The results of this survey suggest that managers are proceeding cautiously with treatments. To facilitate project planning and implementation, managers recommended early coordination with resource specialists, such as hydrologists and fish and wildlife biologists. Well-designed monitoring of the consequences of riparian fuel treatments on fuel loads, fire risk, and ecological effects is needed to provide a scientifically-defensible basis for the continued and growing implementation of these treatments.


Subject(s)
Conservation of Natural Resources/methods , Ecosystem , Fires/prevention & control , Forestry/methods , Environmental Monitoring , Government Programs , Northwestern United States , Rivers , Southwestern United States , Trees
2.
Oecologia ; 139(2): 309-17, 2004 Apr.
Article in English | MEDLINE | ID: mdl-14991395

ABSTRACT

In riparian meadows, narrow zonation of the dominant vegetation frequently occurs along the elevational gradient from the stream edge to the floodplain terrace. We measured plant species composition and above- and belowground biomass in three riparian plant communities-a priori defined as wet, moist, and dry meadow-along short streamside topographic gradients in two montane meadows in northeast Oregon. The objectives were to: (1). compare above- and belowground biomass in the three meadow communities; (2). examine relations among plant species richness, biomass distribution, water table depth, and soil redox potential along the streamside elevational gradients. We installed wells and platinum electrodes along transects (perpendicular to the stream; n=5 per site) through the three plant communities, and monitored water table depth and soil redox potential (10 and 25 cm depth) from July 1997 to August 1999. Mean water table depth and soil redox potential differed significantly along the transects, and characterized a strong environmental gradient. Community differences in plant species composition were reflected in biomass distribution. Highest total biomass (live+dead) occurred in the sedge-dominated wet meadows (4311+/-289 g/m(2)), intermediate biomass (2236+/-221 g/m(2)) was seen in the moist meadow communities, dominated by grasses and sedges, and lowest biomass (1403+/-113 g/m(2)) was observed in the more diverse dry meadows, dominated by grasses and forbs. In the wet and moist communities, belowground biomass (live+dead) comprised 68-81% of the totals. Rhizome-to-root ratios and distinctive vertical profiles of belowground biomass reflected characteristics of the dominant graminoid species within each community. Total biomass was positively correlated with mean water table depth, and negatively correlated with mean redox potential (10 cm and 25 cm depths; P <0.01) and species richness ( P <0.05), indicating that the distribution of biomass coincided with the streamside edaphic gradient in these riparian meadows.


Subject(s)
Cyperaceae , Ecosystem , Poaceae , Altitude , Biomass , Environmental Monitoring , Oxidation-Reduction , Population Dynamics , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...