Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Electron Mater ; 51(10): 5482-5491, 2022.
Article in English | MEDLINE | ID: mdl-35935037

ABSTRACT

We report herein the synthesis of ZnFe2O4 (ZF) nanoparticles via a simple and eco-friendly green route using lemon juice as a reducing agent and fuel. The effect of different calcination temperatures on the particle size and bandgap of grown ZF nanoparticles was investigated. The structural, morphological and optical properties of the synthesized nanoparticles were evaluated using synchrotron x-ray diffraction (S-XRD), field emission scanning electron microscopy (FE-SEM) and UV-visible diffuse reflectance spectroscopy (UV-Vis-DRS), respectively. S-XRD confirmed a spinel F-d3m phase in all four samples calcined at 350°C, 550°C, 750°C and 1000°C. The crystallite size calculated from the Debye-Scherrer equation showed an increase from 14 nm to 20 nm with the increase in calcination temperature. Williamson-Hall (W-H) analysis revealed an increase in the particle size from 16 nm to 21 nm and a decrease in the lattice microstrain from 0.913 × 10-3 to 0.154 × 10-4 with the increase in calcination temperature. The optical bandgap of the ZF nanoparticles obtained from UV-Vis-DRS decreased from 2.265 eV to 2.225 eV with the increase in calcination temperature. The ZF nanoparticles with tunable particle size, lattice microstrain and optical bandgap have potential application in ferrofluid, electromagnetic shielding, photocatalysis, hyperthermia, dye degradation and other areas. Supplementary Information: The online version contains supplementary material available at 10.1007/s11664-022-09813-2.

2.
J Synchrotron Radiat ; 23(2): 629-34, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26917153

ABSTRACT

The protein crystallography beamline (PX-BL21), installed at the 1.5 T bending-magnet port at the Indian synchrotron (Indus-2), is now available to users. The beamline can be used for X-ray diffraction measurements on a single crystal of macromolecules such as proteins, nucleic acids and their complexes. PX-BL21 has a working energy range of 5-20 keV for accessing the absorption edges of heavy elements commonly used for phasing. A double-crystal monochromator [Si(111) and Si(220)] and a pair of rhodium-coated X-ray mirrors are used for beam monochromatization and manipulation, respectively. This beamline is equipped with a single-axis goniometer, Rayonix MX225 CCD detector, fluorescence detector, cryogenic sample cooler and automated sample changer. Additional user facilities include a workstation for on-site data processing and a biochemistry laboratory for sample preparation. In this article the beamline, other facilities and some recent scientific results are briefly described.


Subject(s)
Crystallography, X-Ray/methods , Proteins/chemistry , Synchrotrons
SELECTION OF CITATIONS
SEARCH DETAIL
...