Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 299(11): 105311, 2023 11.
Article in English | MEDLINE | ID: mdl-37797694

ABSTRACT

While the role of endocytosis in focal adhesion turnover-coupled cell migration has been established in addition to its conventional role in cellular functions, the molecular regulators and precise molecular mechanisms that underlie this process remain largely unknown. In this study, we report that proto-oncoprotein hematopoietic PBX-interacting protein (HPIP) localizes to focal adhesions as well as endosomal compartments along with RUN FYVE domain-containing protein 3 (RUFY3) and Rab5, an early endosomal protein. HPIP contains two coiled-coil domains (CC1 and CC2) that are necessary for its association with Rab5 and RUFY3 as CC domain double mutant, that is, mtHPIPΔCC1-2 failed to support it. Furthermore, we show that HPIP and RUFY3 activate Rab5 by serving as noncanonical guanine nucleotide exchange factors of Rab5. In support of this, either deletion of coiled-coil domains or silencing of HPIP or RUFY3 impairs Rab5 activation and Rab5-dependent cell migration. Mechanistic studies further revealed that loss of HPIP or RUFY3 expression severely impairs Rab5-mediated focal adhesion disassembly, FAK activation, fibronectin-associated-ß1 integrin trafficking, and thus cell migration. Together, this study underscores the importance of HPIP and RUFY3 as noncanonical guanine nucleotide exchange factors of Rab5 and in integrin trafficking and focal adhesion turnover, which implicates in cell migration.


Subject(s)
Focal Adhesions , Guanine Nucleotide Exchange Factors , Cell Movement , Endocytosis , Focal Adhesions/genetics , Focal Adhesions/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , rab5 GTP-Binding Proteins/genetics , rab5 GTP-Binding Proteins/metabolism , Humans , Cell Line , Cell Line, Tumor
2.
FEBS J ; 289(6): 1575-1590, 2022 03.
Article in English | MEDLINE | ID: mdl-34668648

ABSTRACT

Hematopoietic PBX-interacting protein (HPIP, also known as PBXIP1) is an estrogen receptor (ER) interacting protein that regulates estrogen-mediated breast cancer cell proliferation and tumorigenesis. However, its functional significance in the context of mammary gland development is unexplored. Here, we report that HPIP is required for prolactin (PRL)-induced lactogenic differentiation in vitro. Molecular analysis of HPIP expression in mice revealed its induced expression at pregnancy and lactation stages of mammary gland. Moreover, PRL is a lactogenic hormone that controls pregnancy as well as lactation and induces Hpip/Pbxip1 expression in a signal transducer and activator of transcription 5a-dependent manner. Using mammary epithelial and lactogenic-competent cell lines, we further show that HPIP plays a regulatory role in PRL-mediated mammary epithelial cell differentiation, which is measured by acini formation, ß-casein synthesis, and lipid droplet formation. Further mechanistic studies using pharmacological inhibitors revealed that HPIP modulates PRL-induced ß-casein synthesis via phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) activation. This study also identified HPIP as a critical regulator of autocrine PRL signaling as treatment with the PRL receptor antagonist Δ1-9-G129R-hPRL restrained HPIP-mediated PRL synthesis, AKT activation, and ß-casein synthesis in cultured HC11 cells. Interestingly, we also uncovered that microRNA-148a (miR-148a) antagonizes HPIP-mediated mammary epithelial cell differentiation. Together, our study identified HPIP as a critical regulator of PRL signaling and revealed a novel molecular circuitry involving PRL, HPIP, PI3K/AKT, and miR-148a that controls mammary epithelial cell differentiation in vitro.


Subject(s)
MicroRNAs , Proto-Oncogene Proteins c-akt , Animals , Caseins/genetics , Caseins/metabolism , Cell Differentiation , Co-Repressor Proteins , Epithelial Cells/metabolism , Female , Mammary Glands, Animal , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Pregnancy , Prolactin/genetics , Prolactin/pharmacology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism
3.
Cancer Lett ; 526: 12-28, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34767928

ABSTRACT

While phenotypic plasticity is a critical factor contributing to tumor heterogeneity, molecular mechanisms underlying this process are largely unknown. Here we report that breast cancer cells display phenotypic diversity in response to hypoxia or normoxia microenvironments by operating a reciprocal positive feedback regulation of HPIP and HIF-1α. We show that under hypoxia, HIF-1α induces HPIP expression that establishes cell survival, and also promotes cell migration/invasion, EMT and metastatic phenotypes in breast cancer cells. Mechanistic studies revealed that HPIP interacts with SRP14, a component of signal recognition particle, and stimulates MMP9 synthesis under hypoxic stress. Whereas, in normoxia, HPIP stabilizes HIF-1α, causing the Warburg effect to support cell growth. Concurrently, mathematical modelling corroborates this reciprocal feedback loop in enabling cell-state transitions in cancer cells. Clinical data indicate that elevated levels of HPIP and HIF-1α correlate with unfavorable prognosis and shorter survival rates in breast cancer subjects. Together, this data shows a reciprocal positive feedback loop between HPIP and HIF-1α that was unknown hitherto. It unveils how the tumor microenvironment influences phenotypic plasticity that has an impact on tumor growth and metastasis and, further signifies considering this pathway as a potential therapeutic target in breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , Mice , Phenotype
4.
Cancer Lett ; 518: 243-255, 2021 10 10.
Article in English | MEDLINE | ID: mdl-34302919

ABSTRACT

While cancer cells rewire metabolic pathways to sustain growth and survival under metabolic stress in solid tumors, the molecular mechanisms underlying these processes remain largely unknown. In this study, cancer cells switched from survival to death during the early to late phases of metabolic stress by employing a novel signaling switch from AMP activated protein kinase (AMPK)-Forkhead box O3 (FOXO3a)-hematopoietic PBX1-interacting protein (HPIP) to the ring finger protein 2 (RNF2)-HPIP-ubiquitin (Ub) pathway. Acute metabolic stress induced proto-oncogene HPIP expression in an AMPK-FOXO3a-dependent manner in breast cancer (BC) cells. HPIP depletion reduced cell survival and tumor formation in mouse xenografts, which was accompanied by diminished intracellular ATP levels and increased apoptosis in BC cells in response to metabolic (glucose) stress. Glutamine flux (13C-labeled) analysis further suggested that HPIP rewired glutamine metabolism by controlling the expression of the solute carrier family 1 member 5 (SLC1A5) and glutaminase (GLS) genes by acting as a coactivator of MYC to ensure cell survival upon glucose deprivation. However, in response to chronic glucose stress, HPIP was ubiquitinated by the E3-Ub ligase, RNF2, and was concomitantly degraded by the proteasome-mediated pathway, ensuring apoptosis. In support of these data, clinical analyses further indicated that elevated levels of HPIP correlated with AMPK activation in BC. Taken together, these data suggest that HPIP is a signal coordinator during metabolic stress and thus serves as a potential therapeutic target in BC.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Breast Neoplasms/metabolism , Glucose/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Polycomb Repressive Complex 1/metabolism , Adaptation, Physiological/physiology , Animals , Apoptosis/physiology , Cell Differentiation/physiology , Cell Line , Cell Line, Tumor , Female , Glutaminase/metabolism , Glutamine/metabolism , HEK293 Cells , Humans , MCF-7 Cells , Mice , Mice, Nude , Minor Histocompatibility Antigens , Stress, Physiological/physiology , Ubiquitin-Protein Ligases/metabolism
5.
Cell Death Dis ; 9(11): 1087, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30352996

ABSTRACT

Of late, nimbolide, a limonoid from the neem tree (Azadirachta indica) has gained increasing research attention owing to its potent antiproliferative and apoptosis-inducing effects. The present study was designed to investigate the effect of nimbolide on autophagy and the time point at which the phosphorylation status of GSK-3ß and PI3K dictate the choice between autophagy and apoptosis in SCC131 and SCC4 oral cancer cells. Additionally, we analysed changes in the expression of proteins involved in autophagy and apoptosis after therapeutic intervention with nimbolide in a hamster model of oral oncogenesis. Furthermore, we also demonstrate changes in the expression of key genes involved in apoptosis and autophagy during the stepwise evolution of hamster and human OSCCs. Nimbolide-induced stereotypical changes in oral cancer cells characteristic of both apoptosis and autophagy. Time-course experiments revealed that nimbolide induces autophagy as an early event and then switches over to apoptosis. Nimbolide negatively regulates PI3K/Akt signalling with consequent increase in p-GSK-3ßTyr216, the active form of GSK-3ß that inhibits autophagy. Downregulation of HOTAIR, a competing endogenous RNA that sponges miR-126 may be a major contributor to the inactivation of PI3K/Akt/GSK3 signalling by nimbolide. Analysis of key markers of apoptosis and autophagy as well as p-AktSer473 during sequential progression of hamster and human OSCC revealed a gradual evolution to a pro-autophagic and antiapoptotic phenotype that could confer a survival advantage to tumors. In summary, the results of the present study provide insights into the molecular mechanisms by which nimbolide augments apoptosis by overcoming the shielding effects of cytoprotective autophagy through modulation of the phosphorylation status of Akt and GSK-3ß as well as the ncRNAs miR-126 and HOTAIR. Development of phytochemicals such as nimbolide that target the complex interaction between proteins and ncRNAs that regulate the autophagy/apoptosis flux is of paramount importance in cancer prevention and therapeutics.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Carcinoma, Squamous Cell/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Limonins/pharmacology , Mouth Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Animals , Anthracenes/pharmacology , Azadirachta/chemistry , Carcinoma, Squamous Cell/chemically induced , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cricetinae , Disease Models, Animal , Humans , Limonins/therapeutic use , Male , Mesocricetus , MicroRNAs/metabolism , Mouth Neoplasms/chemically induced , Mouth Neoplasms/drug therapy , Mouth Neoplasms/pathology , Phosphorylation/drug effects , Piperidines/pharmacology , Plant Extracts/therapeutic use , RNA, Long Noncoding/antagonists & inhibitors , RNA, Long Noncoding/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...