Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Asian Pac J Cancer Prev ; 24(10): 3555-3561, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37898863

ABSTRACT

BACKGROUND: Shielding from radiation and plan dose verification is vital during the potential applications in industrial and medical applications. A number of natural composites have been investigated for protecting against high-energy X-ray shielding. OBJECTIVE: The aim is to learn about how natural composites behave under various X-ray energies at STP. MATERIAL AND METHODS: The radiological parameters of wood samples were determined using computed tomography imaging, specifically relative electron density (RED), Hounsfield units (HUs), and mass density (MD). Percentage attenuation was measured using a semiflux ionization chamber incorporated with a brass build-up cap and an ionization chamber placed at the beam Isocenter for a different type of natural composite. Measurements are being carried out on a Linear accelerator at an SSD of 110 cm with different collimator sizes. RESULTS: Measured values of  HUs, RED, and MD were -232 ± 40, 0.738 ± 0.039, 0.768 ± 0.024 g/cc,-368 ± 41, 0.662 ± 0.047, 0.632 ± 0.024 g/cc, -334 ± 44, 0.639 ± 0.042, 0.666 ± 0.026 g/cc, -370±61, 0.604±0.059, 0.63± 0.036 g/cc, -433±39, 0.543±0.038, 0.608 ± 0.035 g/cc, -382±54, 0.5±0.052, 0.618 ± 0.0316 g/cc, -292±68, 0.680±0.066, 0.708 ± 0.039 g/cc, -298±27, 0.680±0.0229, 0.702± 0.131 g/cc, for Acacia Nilotica, Mangifera Indica, Azadirachta Indica, Tectona Grandis L, Ficus Religiosa, Tecomella Undulata, Sesamum Indicum, Pinus respectively. CONCLUSION: Measurements show that attenuation is affected by the energy of incident photons, collimator opening, and the type of density of the wood. Various radiological parameters were determined for wood samples that can be utilized to create inhomogeneous phantoms in dosimetry. The largest attenuation is found in Acacia Nilotica and Sesamum Indicum, while the lowest attenuation is found in Ficus religiosa.


Subject(s)
Radiology , Radiometry , Humans , X-Rays , Radiometry/methods , Photons , Tomography, X-Ray Computed/methods , Phantoms, Imaging
2.
3 Biotech ; 11(11): 478, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34790502

ABSTRACT

Nanotechnology is an emerging branch of science wherein various valuable molecules with altered properties can be synthesized and utilized for numerous technological applications. Nowadays, nanotechnology is the preferred tool for the agriculture, food, and medicine industries. However, consistent accumulation of toxic by-products during the synthesis of nanoparticles from the established physical and chemical methods imposes an unprecedented danger to the environment and human well-being. The biological route for the synthesis of nanoparticles offers a potential option over the conventional chemical synthesis process due to the involvement of non-toxic and environmentally friendly materials, such as plants, fungi, bacteria, etc. Phytosynthesis, a type of biological synthesis, utilizes various combinations of secondary metabolites from different plant parts (whole plant, leaves, fruit peel, root, bark, seeds, and stem) for non-toxic and environmentally friendly nanoparticles fabrication. Non-toxic and environmentally friendly secondary metabolites derived from plants are the sources of reducing and capping agents during the biosynthesis of nanoparticles which proceeds in a controlled manner with desired characteristics. Phytosynthesis of nanoparticles is also a simple, economic, durable, and reproducible process. The present article is a comprehensive depiction of the synthesis of different metal nanoparticles from diverse plant species.

SELECTION OF CITATIONS
SEARCH DETAIL
...