Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 34(12): 2570-2579.e5, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38772363

ABSTRACT

In early development, active sleep is the predominant sleep state before it is supplanted by quiet sleep. In rats, the developmental increase in quiet sleep is accompanied by the sudden emergence of the cortical delta rhythm (0.5-4 Hz) around postnatal day 12 (P12). We sought to explain the emergence of the cortical delta by assessing developmental changes in the activity of the parafacial zone (PZ), a medullary structure thought to regulate quiet sleep in adults. We recorded from the PZ in P10 and P12 rats and predicted an age-related increase in neural activity during increasing periods of delta-rich cortical activity. Instead, during quiet sleep, we discovered sleep-dependent rhythmic spiking activity-with intervening periods of total silence-phase locked to a local delta rhythm. Moreover, PZ and cortical delta were coherent at P12 but not at P10. PZ delta was also phase locked to respiration, suggesting sleep-dependent modulation of PZ activity by respiratory pacemakers in the ventral medulla. Disconnecting the main olfactory bulbs from the cortex did not diminish cortical delta, indicating that the influence of respiration on delta at this age is not mediated indirectly through nasal breathing. Finally, we observed an increase in parvalbumin-expressing terminals in the PZ across these ages, supporting a role for local GABAergic inhibition in the PZ's rhythmicity. The unexpected discovery of delta-rhythmic neural activity in the medulla-when cortical delta is also emerging-provides a new perspective on the brainstem's role in regulating sleep and promoting long-range functional connectivity in early development.


Subject(s)
Cerebral Cortex , Delta Rhythm , Medulla Oblongata , Sleep , Animals , Sleep/physiology , Rats , Delta Rhythm/physiology , Medulla Oblongata/physiology , Cerebral Cortex/physiology , Cerebral Cortex/growth & development , Male , Rats, Sprague-Dawley
2.
bioRxiv ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38168267

ABSTRACT

In early development, active sleep is the predominant sleep state before it is supplanted by quiet sleep. In rats, the developmental increase in quiet sleep is accompanied by the sudden emergence of the cortical delta rhythm (0.5-4 Hz) around postnatal day 12 (P12). We sought to explain the emergence of cortical delta by assessing developmental changes in the activity of the parafacial zone (PZ), a medullary structure thought to regulate quiet sleep in adults. We recorded from PZ in P10 and P12 rats and predicted an age-related increase in neural activity during increasing periods of delta-rich cortical activity. Instead, during quiet sleep we discovered sleep-dependent rhythmic spiking activity-with intervening periods of total silence-phase-locked to a local delta rhythm. Moreover, PZ and cortical delta were coherent at P12, but not at P10. PZ delta was also phase-locked to respiration, suggesting sleep-dependent modulation of PZ activity by respiratory pacemakers in the ventral medulla. Disconnecting the main olfactory bulbs from the cortex did not diminish cortical delta, indicating that the influence of respiration on delta at this age is not mediated indirectly through nasal breathing. Finally, we observed an increase in parvalbumin-expressing terminals in PZ across these ages, supporting a role for GABAergic inhibition in PZ's rhythmicity. The discovery of delta-rhythmic neural activity in the medulla-when cortical delta is also emerging-opens a new path to understanding the brainstem's role in regulating sleep and synchronizing rhythmic activity throughout the brain.

3.
eNeuro ; 6(2)2019.
Article in English | MEDLINE | ID: mdl-31068362

ABSTRACT

Mutations and copy number variants of the CUB and Sushi multiple domains 2 (CSMD2) gene are associated with neuropsychiatric disease. CSMD2 encodes a single-pass transmembrane protein with a large extracellular domain comprising repeats of CUB and Sushi domains. High expression of CSMD2 in the developing and mature brain suggests possible roles in neuron development or function, but the cellular functions of CSMD2 are not known. In this study, we show that mouse Csmd2 is expressed in excitatory and inhibitory neurons in the forebrain. Csmd2 protein exhibits a somatodendritic localization in the neocortex and hippocampus, with smaller puncta localizing to the neuropil. Using immunohistochemical and biochemical methods, we demonstrate that Csmd2 localizes to dendritic spines and is enriched in the postsynaptic density (PSD). Accordingly, we show that the cytoplasmic tail domain of Csmd2 interacts with synaptic scaffolding proteins of the membrane-associated guanylate kinase (MAGUK) family. The association between Csmd2 and MAGUK member PSD-95 is dependent on a PDZ-binding domain on the Csmd2 tail, which is also required for synaptic targeting of Csmd2. Finally, we show that knock-down of Csmd2 expression in hippocampal neuron cultures results in reduced complexity of dendritic arbors and deficits in dendritic spine density. Knock-down of Csmd2 in immature developing neurons results in reduced filopodia density, whereas Csmd2 knock-down in mature neurons causes significant reductions in dendritic spine density and dendrite complexity. Together, these results point toward a function for Csmd2 in development and maintenance of dendrites and synapses, which may account for its association with certain psychiatric disorders.


Subject(s)
Dendritic Spines/metabolism , Disks Large Homolog 4 Protein/metabolism , Hippocampus/metabolism , Membrane Proteins/metabolism , Neocortex/metabolism , Nerve Tissue Proteins/metabolism , Neurons/physiology , Post-Synaptic Density/metabolism , Animals , Cells, Cultured , Female , Hippocampus/cytology , Male , Membrane Proteins/deficiency , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Nerve Tissue Proteins/deficiency , Neurons/metabolism , Pseudopodia/metabolism
4.
Development ; 146(5)2019 03 07.
Article in English | MEDLINE | ID: mdl-30770393

ABSTRACT

During neocortical development, neurons are produced by a diverse pool of neural progenitors. A subset of progenitors express the Cux2 gene and are fate restricted to produce certain neuronal subtypes; however, the upstream pathways that specify these progenitor fates remain unknown. To uncover the transcriptional networks that regulate Cux2 expression in the forebrain, we characterized a conserved Cux2 enhancer that recapitulates Cux2 expression specifically in the cortical hem. Using a bioinformatic approach, we identified putative transcription factor (TF)-binding sites for cortical hem-patterning TFs. We found that the homeobox TF Lmx1a can activate the Cux2 enhancer in vitro Furthermore, we showed that Lmx1a-binding sites were required for enhancer activity in the cortical hem in vivo Mis-expression of Lmx1a in hippocampal progenitors caused an increase in Cux2 enhancer activity outside the cortical hem. Finally, we compared several human enhancers with cortical hem-restricted activity and found that recurrent Lmx1a-binding sites are a top shared feature. Uncovering the network of TFs involved in regulating Cux2 expression will increase our understanding of the mechanisms pivotal in establishing Cux2 lineage fates in the developing forebrain.


Subject(s)
Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Homeodomain Proteins/physiology , Introns , LIM-Homeodomain Proteins/physiology , Transcription Factors/physiology , Animals , Binding Sites , Cell Lineage , Computational Biology , Female , Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Prosencephalon/embryology , Telencephalon/embryology , Transcription Factors/genetics
5.
J Neurosci ; 38(23): 5237-5250, 2018 06 06.
Article in English | MEDLINE | ID: mdl-29739868

ABSTRACT

Neural progenitor cells in the developing dorsal forebrain give rise to excitatory neurons, astrocytes, and oligodendrocytes for the neocortex. While we are starting to gain a better understanding about the mechanisms that direct the formation of neocortical neurons and astrocytes, far less is known about the molecular mechanisms that instruct dorsal forebrain progenitors to make oligodendrocytes. In this study, we show that Sonic hedgehog (Shh) signaling is required in dorsal progenitors for their late embryonic transition to oligodendrogenesis. Using genetic lineage-tracing in mice of both sexes, we demonstrate that most oligodendrocytes in the embryonic neocortex derive from Emx1+ dorsal forebrain progenitors. Deletion of the Shh signaling effector Smo specifically in Emx1+ progenitors led to significantly decreased oligodendrocyte numbers in the embryonic neocortex. Conversely, knock-out of the Shh antagonist Sufu was sufficient to increase neocortical oligodendrogenesis. Using conditional knock-out strategies, we found that Shh ligand is supplied to dorsal progenitors through multiple sources. Loss of Shh from Dlx5/6+ interneurons caused a significant reduction in oligodendrocytes in the embryonic neocortex. This phenotype was identical to that observed upon Shh deletion from the entire CNS using Nestin-Cre, indicating that interneurons migrating into the neocortex from the subpallium are the primary neural source of Shh for dorsal oligodendrogenesis. Additionally, deletion of Shh from migrating interneurons together with the choroid plexus epithelium led to a more severe loss of oligodendrocytes, suggesting that the choroid plexus is an important non-neural source of Shh ligand. Together, our studies demonstrate that the dorsal wave of neocortical oligodendrogenesis occurs earlier than previously appreciated and requires highly regulated Shh signaling from multiple embryonic sources.SIGNIFICANCE STATEMENT Most neocortical oligodendrocytes are made by neural progenitors in the dorsal forebrain, but the mechanisms that specify this fate are poorly understood. This study identifies Sonic hedgehog (Shh) signaling as a critical pathway in the transition from neurogenesis to oligodendrogenesis in dorsal forebrain progenitors during late embryonic development. The timing of this neuron-to-glia "switch" coincides with the arrival of migrating interneurons into the dorsal germinal zone, which we identify as a critical source of Shh ligand, which drives oligodendrogenesis. Our data provide evidence for a new model in which Shh signaling increases in the dorsal forebrain late in embryonic development to provide a temporally regulated mechanism that initiates the third wave of neocortical oligodendrogenesis.


Subject(s)
Hedgehog Proteins/metabolism , Neocortex/embryology , Neural Stem Cells/cytology , Neurogenesis/physiology , Oligodendroglia/cytology , Animals , Cell Differentiation/physiology , Mice , Mice, Knockout , Neocortex/metabolism , Neural Stem Cells/metabolism , Oligodendroglia/metabolism , Signal Transduction/physiology
6.
Infect Immun ; 81(12): 4453-60, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24042120

ABSTRACT

The production of type 1 fimbriae in Salmonella enterica serovar Typhimurium is controlled, in part, by three proteins, FimZ, FimY, and FimW. Amino acid sequence analysis indicates that FimZ belongs to the family of bacterial response regulators of two-component systems. In these studies, we have demonstrated that introducing a mutation mimicking phosphorylation of FimZ is necessary for activation of its target gene, fimA. In addition, the interaction of FimZ with FimW, a repressor of fimA expression, occurs only when FimZ is phosphorylated. Consequently, the negative regulatory effect of FimW is most likely due to downmodulation of the active FimZ protein. FimY does not appear to function as a response regulator, and its activity can be lost by mimicking the phosphorylation of FimY. Overproduction of FimY cannot alleviate the nonfimbriate phenotype in a FimZ mutant, whereas high levels of FimZ can overcome the nonfimbriate phenotype of a FimY mutant. It appears that FimY acts upstream of FimZ to activate fimA expression.


Subject(s)
Antigens, Bacterial/metabolism , Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Fimbriae Proteins/metabolism , Fimbriae, Bacterial/metabolism , Amino Acid Sequence , Antigens, Bacterial/biosynthesis , Fimbriae Proteins/biosynthesis , Fimbriae, Bacterial/genetics , Gene Expression Regulation, Bacterial , Phosphorylation , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Sequence Analysis, Protein
7.
Infect Immun ; 80(9): 3289-96, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22778099

ABSTRACT

Salmonella enterica serovar Typhimurium is a Gram-negative member of the family Enterobacteriaceae and is a common cause of bacterial food poisoning in humans. The fimbrial appendages are found on the surface of many enteric bacteria and enable the bacteria to bind to eukaryotic cells. S. Typhimurium type 1 fimbriae are characterized by mannose-sensitive hemagglutination and are assembled via the chaperone/usher pathway. S. Typhimurium type 1 fimbrial proteins are encoded by the fim gene cluster (fimAICDHFZYW), with fimAICDHF expressed as a single transcriptional unit. The structural components of the fimbriae are FimA (major subunit), FimI, FimH (adhesin), and FimF (adaptor). In order to determine which components are required for fimbrial formation in S. Typhimurium, mutations in fimA, fimI, fimH, and fimF were constructed and examined for their ability to produce surface-assembled fimbriae. S. Typhimurium SL1344ΔfimA, -ΔfimH, and -ΔfimF mutants were unable to assemble fimbriae, indicating that these genes are necessary for fimbrial production in S. Typhimurium. However, SL1344ΔfimI was able to assemble fimbriae. In Escherichia coli type 1 and Pap fimbriae, at least two adaptors are expressed in addition to the adhesins. However, E. coli type 1 and Pap fimbriae have been reported to be able to assemble fimbriae in the absence of these proteins. These results suggest differences between the S. Typhimurium type 1 fimbrial system and the E. coli type 1 and Pap fimbrial systems.


Subject(s)
Fimbriae Proteins/genetics , Fimbriae Proteins/metabolism , Fimbriae, Bacterial/metabolism , Macromolecular Substances/metabolism , Protein Multimerization , Salmonella typhimurium/physiology , Gene Deletion , Genes, Bacterial , Multigene Family , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism
8.
Microbiology (Reading) ; 157(Pt 11): 3162-3171, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21852351

ABSTRACT

Type 1 fimbriae produced by serovars of Salmonella are characterized by their ability to agglutinate guinea pig erythrocytes in the absence of d-mannose but not in its presence. The FimH protein is the adhesin that mediates this reaction; it is distinct from the major fimbrial protei.n (FimA) that composes the fimbrial shaft. Avian-adapted serovars of Salmonella produce non-haemagglutinating fimbriae that have been reported to mediate adherence to avian cells. A single amino acid substitution is present in the FimH adhesin of these strains compared to that of a Typhimurium isolate. Also, previous studies have shown that single nucleotide polymorphisms in two strains of the Typhimurium fimH alter the binding specificity. We therefore investigated the allelic variation of fimH from a range of serotypes (both host-adapted and non-host-adapted) and isolates of Salmonella. Most FimH adhesins mediated the mannose-sensitive haemagglutination of guinea pig erythrocytes, but many did not facilitate adherence to HEp-2 cells. A small number of isolates also produced fimbriae but did not mediate adherence to either cell type. Transformants possessing cloned fimH genes exhibited a number of different substitutions within the predicted amino acid sequence of the FimH polypeptide. No identical FimH amino sequence was found between strains that adhere to erythrocytes and/or HEp-2 cells and those produced by non-adherent strains. FimH-mediated adherence to HEp-2 cells was invariably associated with the ability to form biofilms on mannosylated bovine serum albumin.


Subject(s)
Adhesins, Bacterial/metabolism , Bacterial Adhesion/genetics , Biofilms/growth & development , Fimbriae Proteins/metabolism , Salmonella enterica/genetics , Adhesins, Bacterial/genetics , Alleles , Animals , Cattle , Cell Line , DNA, Bacterial/genetics , Fimbriae Proteins/genetics , Guinea Pigs , Humans , Polymorphism, Single Nucleotide , Salmonella enterica/classification , Salmonella enterica/physiology , Sequence Analysis, DNA , Serotyping
SELECTION OF CITATIONS
SEARCH DETAIL
...