Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 39(40): 14433-14440, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37756498

ABSTRACT

Tangential flow interfacial self-assembly (TaFISA) is a promising scalable technique enabling uniformly aligned carbon nanotubes for high-performance semiconductor electronics. In this process, flow is utilized to induce global alignment in two-dimensional nematic carbon nanotube assemblies trapped at a liquid/liquid interface, and these assemblies are subsequently deposited on target substrates. Here, we present an observational study of experimental parameters that affect the interfacial assembly and subsequent aligned nanotube deposition. We specifically study the water contact angle (WCA) of the substrate, nanotube ink composition, and water subphase and examine their effects on liquid crystal defects, overall and local alignment, and nanotube bunching or crowding. By varying the substrate chemical functionalization, we determine that highly aligned, densely packed, individualized nanotubes deposit only at relatively small WCA between 35 and 65°. At WCA (< 10°), high nanotube bunching or crowding occurs, and the film is nonuniform, while aligned deposition ceases to occur at higher WCA (>65°). We find that the best alignment, with minimal liquid crystal defects, occurs when the polymer-wrapped nanotubes are dispersed in chloroform at a low (0.6:1) wrapper polymer to nanotube ratio. We also demonstrate that modifying the water subphase through the addition of glycerol not only improves overall alignment and reduces liquid crystal defects but also increases local nanotube bunching. These observations provide important guidance for the implementation of TaFISA and its use toward creating technologies based on aligned semiconducting carbon nanotubes.

2.
Soft Matter ; 18(25): 4653-4659, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35704922

ABSTRACT

Controlling the deposition of polymer-wrapped single-walled carbon nanotubes (s-CNTs) onto functionalized substrates can enable the fabrication of s-CNT arrays for semiconductor devices. In this work, we utilize classical atomistic molecular dynamics (MD) simulations to show that a simple descriptor of solvent structure near silica substrates functionalized by a wide variety of self-assembled monolayers (SAMs) can predict trends in the deposition of s-CNTs from toluene. Free energy calculations and experiments indicate that those SAMs that lead to maximum disruption of solvent structure promote deposition to the greatest extent. These findings are consistent with deposition being driven by solvent-mediated interactions that arise from SAM-solvent interactions, rather than direct s-CNT-SAM interactions, and will permit the rapid computational exploration of potential substrate designs for controlling s-CNT deposition and alignment.

3.
Nat Commun ; 13(1): 2992, 2022 05 30.
Article in English | MEDLINE | ID: mdl-35637229

ABSTRACT

Semiconducting graphene nanoribbons are promising materials for nanoelectronics but are held back by synthesis challenges. Here we report that molecular-scale carbon seeds can be exploited to initiate the chemical vapor deposition (CVD) synthesis of graphene to generate one-dimensional graphene nanoribbons narrower than 5 nm when coupled with growth phenomena that selectively extend seeds along a single direction. This concept is demonstrated by subliming graphene-like polycyclic aromatic hydrocarbon molecules onto a Ge(001) catalyst surface and then anisotropically evolving size-controlled nanoribbons from the seeds along [Formula: see text] of Ge(001) via CH4 CVD. Armchair nanoribbons with mean normalized standard deviation as small as 11% (3 times smaller than nanoribbons nucleated without seeds), aspect ratio as large as 30, and width as narrow as 2.6 nm (tunable via CH4 exposure time) are realized. Two populations of nanoribbons are compared in field-effect transistors (FETs), with off-current differing by 150 times because of the nanoribbons' different widths.


Subject(s)
Cardiovascular Diseases , Graphite , Nanotubes, Carbon , Catalysis , Graphite/chemistry , Humans , Nanotubes, Carbon/chemistry
4.
Sci Adv ; 7(37): eabh0640, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34516885

ABSTRACT

Semiconducting carbon nanotubes promise faster performance and lower power consumption than Si in field-effect transistors (FETs) if they can be aligned in dense arrays. Here, we demonstrate that nanotubes collected at a liquid/liquid interface self-organize to form two-dimensional (2D) nematic liquid crystals that globally align with flow. The 2D liquid crystals are transferred onto substrates in a continuous process generating dense arrays of nanotubes aligned within ±6°, ideal for electronics. Nanotube ordering improves with increasing concentration and decreasing temperature due to the underlying liquid crystal phenomena. The excellent alignment and uniformity of the transferred assemblies enable FETs with exceptional on-state current density averaging 520 µA µm−1at only −0.6 V, and variation of only 19%. FETs with ion gel top gates demonstrate subthreshold swing as low as 60 mV decade−1. Deposition across a 10-cm substrate is achieved, evidencing the promise of 2D nanotube liquid crystals for commercial semiconductor electronics.

5.
Nanoscale Adv ; 3(6): 1767-1775, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-36132553

ABSTRACT

Selective deposition of semiconducting carbon nanotubes (s-CNTs) into densely packed, aligned arrays of individualized s-CNTs is necessary to realize their potential in semiconductor electronics. We report the combination of chemical contrast patterns, topography, and pre-alignment of s-CNTs via shear to achieve selective-area deposition of aligned arrays of s-CNTs. Alternate stripes of surfaces favorable and unfavorable to s-CNT adsorption were patterned with widths varying from 2000 nm down to 100 nm. Addition of topography to the chemical contrast patterns combined with shear enabled the selective-area deposition of arrays of quasi-aligned s-CNTs (∼14°) even in patterns that are wider than the length of individual nanotubes (>500 nm). When the width of the chemical and topographical contrast patterns is less than the length of individual nanotubes (<500 nm), confinement effects become dominant enabling the selective-area deposition of much more tightly aligned s-CNTs (∼7°). At a trench width of 100 nm, we demonstrate the lowest standard deviation in alignment degree of 7.6 ± 0.3° at a deposition shear rate of 4600 s-1, while maintaining an individualized s-CNT density greater than 30 CNTs µm-1. Chemical contrast alone enables selective-area deposition, but chemical contrast in addition to topography enables more effective selective-area deposition and stronger confinement effects, with the advantage of removal of nanotubes deposited in spurious areas via selective lift-off of the topographical features. These findings provide a methodology that is inherently scalable, and a means to deposit spatially selective, aligned s-CNT arrays for next-generation semiconducting devices.

6.
ACS Appl Bio Mater ; 4(11): 7961-7966, 2021 11 15.
Article in English | MEDLINE | ID: mdl-35006777

ABSTRACT

Cellulose nanocrystals (CNCs) are a naturally abundant nanomaterial derived from cellulose which exhibit many exciting mechanical, chemical, and rheological properties, making CNCs attractive for use in coatings. Furthermore, the alignment of CNCs is important to exploit their anisotropic mechanical and piezoelectric properties. Here, we demonstrate and study the fabrication of submonolayer to 25 nm thick films of CNCs via solution-based shear alignment. CNC solution is forced through a sub-millimeter tall channel at high volumetric flow rates generating shear. The half-width at half-maximum of the spread in CNC alignment significantly improves from 78 to 17° by increasing the shear rate from 19 to 19,000 s-1. We demonstrate that the film thickness is increased by increasing the volume of CNC solution flowed over the substrate and/or increasing the CNC solution concentration, with a degradation in film uniformity at higher (≥7 wt %) concentrations, likely due to CNC aggregates in the solution. Deposition of ultrathin aligned CNC films occurs within seconds and the technique is inherently scalable, demonstrating the promise of solution-based shear for the fabrication of ultrathin aligned CNC films, thereby enabling the future study of their inherent material properties or use in high-performance coatings and applications.


Subject(s)
Nanoparticles , Nanostructures , Anisotropy , Cellulose/chemistry , Nanoparticles/chemistry , Nanostructures/chemistry , Rheology
7.
Langmuir ; 35(38): 12492-12500, 2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31461294

ABSTRACT

Semiconducting single-walled carbon nanotube (s-CNT) arrays are being explored for next-generation semiconductor electronics. Even with the multitude of alignment and spatially localized s-CNT deposition methods designed to control s-CNT deposition, fundamental understanding of the driving forces for s-CNT deposition is still lacking. The individual roles of the dispersant, solvent, target substrate composition, and the s-CNT itself are not completely understood because it is difficult to decouple deposition parameters. Here, we study poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(6,6'-[2,2'-{bipyridine}])] (PFO-BPy)-wrapped s-CNT deposition from solution onto a chemically modified substrate. We fabricate various self-assembled monolayers (SAMs) to gain a greater understanding of substrate effects on PFO-BPy-wrapped s-CNT deposition. We observe that s-CNT deposition is dependent on both the target substrate and s-CNT dispersion solvent. To complement the experiments, molecular dynamics simulations of PFO-BPy-wrapped s-CNT deposition on two different SAMs are performed to obtain mechanistic insights into the effect of the substrate and solvent on s-CNT deposition. We find that the global free-energy minimum associated with favorable s-CNT adsorption occurs for a configuration in which the minimum of the solvent density around the s-CNT coincides with the minimum of the solvent density above a SAM-grafted surface, indicating that solvent structure near a SAM-grafted surface determines the adsorption free-energy landscape driving s-CNT deposition. Our results will help guide informative substrate design for s-CNT array fabrication in semiconductor devices.

8.
ACS Macro Lett ; 7(1): 100-104, 2018 Jan 16.
Article in English | MEDLINE | ID: mdl-35610925

ABSTRACT

High grafting density polymer brushes are grown on an inimer coating bearing nitroxide-mediated polymerization (NMP) inimers and glycidyl methacrylate (GMA). The inimer coating is cross-linked on the substrate to provide an initiator layer with needed stability during long exposure to organic solvents at moderate to high temperatures. Surface-initiated nitroxide-mediated polymerization (SI-NMP) is conducted to grow polystyrene (PS) brushes on the coating with a sacrificial layer designed to cleave the brushes. The cleaved brushes have larger molecular weights than the corresponding free polymers. The grafting density of the brushes is as high as 1.12 chains/nm2 throughout the brush growth, which is among the densest PS brushes reported so far. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) depth profiling are used to reveal the surface morphology and kinetics of the growth.

9.
Langmuir ; 33(31): 7751-7761, 2017 08 08.
Article in English | MEDLINE | ID: mdl-28704605

ABSTRACT

The corona that forms as protein adsorbs to gold nanospheres (AuNSs) is directly influenced by the surface chemistry of the AuNS. Tools to predict adsorption outcomes are needed for intelligent design of nanomaterials for biological applications. We hypothesized that the denaturation behavior of a protein might be a useful predictor of adsorption behavior to AuNSs, and used this idea to study protein adsorption to anionic citrate-capped AuNSs and to cationic poly(allylamine hydrochloride) (PAH) wrapped AuNSs. Three proteins (α-amylase (A-Amy), ß-lactoglobulin (BLG), and bovine serum albumin (BSA)), representing three different classes of acid denaturation behavior, were selected with BLG being the least deformable and BSA being the most deformable. Protein adsorption to AuNSs was monitored via UV-vis spectrophotometry and dynamic light scattering. Changes to the protein structure upon AuNS interaction were monitored via circular dichroism spectroscopy. Binding constants were determined using the Langmuir adsorption isotherm, resulting in BSA > BLG ≫ A-Amy affinities for citrate-capped gold nanospheres. PAH-coated AuNSs displayed little affinity for these proteins at similar concentrations as citrate-coated AuNSs and became agglomerated at high protein concentrations. The enzymatic activity of A-Amy/citrate AuNS conjugates was measured via colorimetric assay, and found to be 11% of free A-Amy, suggesting that binding restricts access to the active site. Across both citrate AuNSs and PAH AuNSs, the changes in secondary structure were greatest for BSA > A-Amy > BLG, which does follow the trends predicted by acid denaturation characteristics.


Subject(s)
Nanospheres , Adsorption , Animals , Gold , Serum Albumin, Bovine , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...