Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Res ; 390: 112659, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32437887

ABSTRACT

Individuals who begin drug use during early adolescence experience more adverse consequences compared to those initiating later, especially if they are female. The mechanisms for these age and gender differences remain obscure, but studies in rodents suggest that psychostimulants may disrupt the normal ontogeny of dopamine and glutamate systems in the prefrontal cortex (PFC). Here, we studied Sprague-Dawley rats of both sexes who began methamphetamine (METH, i.v.) self-administration in adolescence (postnatal [P] day 41) or adulthood (P91). Rats received seven daily 2-h self-administration sessions with METH or saccharin as the reinforcer, followed by 14 daily long access (LgA; 6 h) sessions. After 7 and 14 days of abstinence, novel object (NOR) or object-in-place (OiP) recognition was assessed. PFC and nucleus accumbens were collected 7 days after the final cognitive test and NMDA receptor subunits and dopamine D1 receptor expression was measured. We found that during LgA sessions, adolescent-onset rats escalated METH intake more rapidly than adult-onset rats, with adolescent-onset females earning the most infusions. Adolescent-onset rats with a history of METH self-administration exhibited modest deficits in OiP compared to their adult-onset counterparts, but there was no sex difference and self-administration groups did not differ from naïve control rats. All rats displayed intact novel object recognition memory. We found no group differences in D1 and NMDA receptor expression, suggesting no long-lasting alteration of ontogenetic expression profiles. Our findings suggest that adolescent-onset drug use is more likely to lead to compulsive-like patterns of drug-taking and modest dysfunction in PFC-dependent cognition.


Subject(s)
Central Nervous System Stimulants/pharmacology , Methamphetamine/pharmacology , Prefrontal Cortex/drug effects , Recognition, Psychology/drug effects , Age Factors , Animals , Behavior, Animal/drug effects , Central Nervous System Stimulants/administration & dosage , Cognitive Dysfunction/etiology , Disease Models, Animal , Female , Male , Methamphetamine/administration & dosage , Nucleus Accumbens/drug effects , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D1/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Sex Factors , Substance-Related Disorders/complications
2.
Behav Neurosci ; 132(2): 75-87, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29481101

ABSTRACT

Compared with adults, adolescent behavior is often characterized by reduced behavioral flexibility, increased sensitivity to reward, and increased likelihood to take risks. These traits, which have been hypothesized to confer heightened vulnerability to psychopathologies such as substance use disorders (SUDs), have been the focus of studies in laboratory animal models that seek to understand their neural underpinnings. However, rodent studies to date have typically used only males and have adopted standard methodological practices (e.g., weight loss inducing food restriction) that are likely to have a disparate impact on adolescents compared with adults. Here, we used adolescent and adult Sprague-Dawley rats of both sexes to study instrumental behavior tasks that assess behavioral flexibility (strategy shifting and reversal learning; Experiment 1), sensitivity to reward value (outcome devaluation; Experiment 2), and risky decision making (probability discounting; Experiment 3). In Experiment 1, we found that adolescents were faster to acquire reversal learning than adults but there were no differences in strategy shifting. In Experiments 2 and 3, adolescents and adults were equally sensitive to changes in reward value and exhibited similar reductions in preference for a large reward when reinforcement probability was decreased. However, adolescents responded more efficiently and earned reinforcers at a higher rate than their same-sex, adult counterparts. Together, these findings provide only limited support for the existence of an "adolescent-typical" phenotype in Sprague-Dawley rats and instead suggest that age differences in the expression of these behaviors may depend on conditions such as pubertal status and motivational state. (PsycINFO Database Record


Subject(s)
Aging/psychology , Decision Making/physiology , Reversal Learning/physiology , Reward , Risk-Taking , Sex Characteristics , Aging/physiology , Animals , Conditioning, Operant/physiology , Female , Male , Rats, Sprague-Dawley , Sexual Maturation
SELECTION OF CITATIONS
SEARCH DETAIL
...