Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 1073, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36658207

ABSTRACT

Adipose tissue (AT) optical properties for physiological temperatures and in vivo conditions are still insufficiently studied. The AT is composed mainly of packed cells close to spherical shape. It is a possible reason that AT demonstrates a very complicated spatial structure of reflected or transmitted light. It was shown with a cellular tissue phantom, is split into a fan of narrow tracks, originating from the insertion point and representing filament-like light distribution. The development of suitable approaches for describing light propagation in a AT is urgently needed. A mathematical model of the propagation of light through the layers of fat cells is proposed. It has been shown that the sharp local focusing of optical radiation (light localized near the shadow surface of the cells) and its cleavage by coupling whispering gallery modes depends on the optical thickness of the cell layer. The optical coherence tomography numerical simulation and experimental studies results demonstrate the importance of sharp local focusing in AT for understanding its optical properties for physiological conditions and at AT heating.


Subject(s)
Adipocytes , Models, Theoretical , Temperature , Scattering, Radiation , Computer Simulation
2.
Biophys Rev ; 14(4): 1005-1022, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36042751

ABSTRACT

Optical clearing of the lung tissue aims to make it more transparent to light by minimizing light scattering, thus allowing reconstruction of the three-dimensional structure of the tissue with a much better resolution. This is of great importance for monitoring of viral infection impact on the alveolar structure of the tissue and oxygen transport. Optical clearing agents (OCAs) can provide not only lesser light scattering of tissue components but also may influence the molecular transport function of the alveolar membrane. Air-filled lungs present significant challenges for optical imaging including optical coherence tomography (OCT), confocal and two-photon microscopy, and Raman spectroscopy, because of the large refractive-index mismatch between alveoli walls and the enclosed air-filled region. During OCT imaging, the light is strongly backscattered at each air-tissue interface, such that image reconstruction is typically limited to a single alveolus. At the same time, the filling of these cavities with an OCA, to which water (physiological solution) can also be attributed since its refractive index is much higher than that of air will lead to much better tissue optical transmittance. This review presents general principles and advances in the field of tissue optical clearing (TOC) technology, OCA delivery mechanisms in lung tissue, studies of the impact of microbial and viral infections on tissue response, and antimicrobial and antiviral photodynamic therapies using methylene blue (MB) and indocyanine green (ICG) dyes as photosensitizers.

3.
J Biophotonics ; 15(7): e202100393, 2022 07.
Article in English | MEDLINE | ID: mdl-35340116

ABSTRACT

Optical clearing (OC) of adipose tissue has not been studied enough, although it can be promising in medical applications, including surgery and cosmetology, for example, to visualize blood vessels or increase the permeability of tissues to laser beams. The main objective of this work is to develop technology for OC of abdominal adipose tissue in vivo using hyperosmotic optical clearing agents (OCAs). The maximum OC effect (77%) was observed for ex vivo rat adipose tissue samples exposed to OCA on fructose basis for 90 minutes. For in vivo studies, the maximum effect of OC (65%) was observed when using OCA based on diatrizoic acid and dimethylsulfoxide for 120 minutes. Histological analysis showed that in vivo application of OCAs may induce a limited local necrosis of fat cells. The efficiency of OC correlated with local tissue damage through cell necrosis due to accompanied cell lipolysis.


Subject(s)
Immersion , Skin , Adipose Tissue , Animals , Light , Necrosis , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...