Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 130(8): 083801, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36898103

ABSTRACT

We observe linear and nonlinear light localization at the edges and in the corners of truncated moiré arrays created by the superposition of periodic mutually twisted at Pythagorean angles square sublattices. Experimentally exciting corner linear modes in the femtosecond-laser written moiré arrays we find drastic differences in their localization properties in comparison with the bulk excitations. We also address the impact of nonlinearity on the corner and bulk modes and experimentally observe the crossover from linear quasilocalized states to the surface solitons emerging at the higher input powers. Our results constitute the first experimental demonstration of localization phenomena induced by truncation of periodic moiré structures in photonic systems.

2.
Phys Rev Lett ; 128(9): 093901, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35302806

ABSTRACT

We report the experimental observation of nonlinear light localization and edge soliton formation at the edges of fs-laser written trimer waveguide arrays, where transition from nontopological to topological phases is controlled by the spacing between neighboring trimers. We found that, in the former regime, edge solitons occur only above a considerable power threshold, whereas in the latter one they bifurcate from linear states. Edge solitons are observed in a broad power range where their propagation constant falls into one of the topological gaps of the system, while partial delocalization is observed when considerable nonlinearity drives the propagation constant into an allowed band, causing coupling with bulk modes. Our results provide direct experimental evidence of the coexistence and selective excitation in the same or in different topological gaps of two types of topological edge solitons with different internal structures, which can rarely be observed even in nontopological systems. This also constitutes the first experimental evidence of formation of topological solitons in a nonlinear system with more than one topological gap.

3.
Opt Express ; 29(16): 26058-26067, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34614919

ABSTRACT

We consider waveguide lattices as the architecture to implement a wide range of multiport transformations. In this architecture, a particular transfer matrix is obtained by setting step-wise profiles of propagation constants experienced by a field evolving in a lattice. To investigate the capabilities of this architecture, we numerically study the implementation of random transfer matrices as well as several notable cases, such as the discrete Fourier transform, the Hadamard, and permutation matrices. We show that waveguide lattice schemes are more compact than their traditional lumped-parameter counterparts, thus the proposed architecture may be beneficial for photonic information processing systems of the future.

4.
Phys Rev Lett ; 124(1): 010501, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31976709

ABSTRACT

The decomposition of large unitary matrices into smaller ones is important because it provides ways to the realization of classical and quantum information processing schemes. Today, most of the methods use planar meshes of tunable two-channel blocks; however, the schemes turn out to be sensitive to fabrication errors. We study a novel decomposition method based on multichannel blocks. We have shown that the scheme is universal even when the block's transfer matrices are chosen at random, making it virtually insensitive to errors. Moreover, the placement of the variable elements can be arbitrary, so that the scheme is not bound to specific topologies. Our method can be beneficial for large-scale implementations of unitary transformations by techniques, which are not of wide proliferation today or have yet to be developed.

5.
Opt Lett ; 42(20): 4231-4234, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-29028055

ABSTRACT

Integrated optical waveguides, manufactured with femtosecond laser writing (FSLW) technology, enable precise control and manipulation of light in complicated photonic chips. However, due to the intrinsically low anisotropy of FSLW waveguides, polarizing integrated devices have had a relatively large footprint. In this Letter, we demonstrate an approach based on stress-induced anisotropy, allowing us to decrease the size of polarizing directional couplers down to 3.7 mm, almost an order of magnitude shorter than previously reported. The measured extinction ratios at the wavelength of 808 nm are 16 dB and 20 dB for the horizontal and vertical polarizations, respectively. We provide a possible theoretical model for the observed effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...