Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biosensors (Basel) ; 13(3)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36979566

ABSTRACT

The current study reports on the development of a rapid and cost-effective TB-antigen diagnostic test for the detection of Mycobacterium biomarkers from non-sputum-based samples. Two gold nanoparticle (AuNP)-based rapid diagnostic tests (RDTs) in the form of lateral flow immunoassays (LFIAs) were developed for detection of immunodominant TB antigens, the 6 kDa early secreted antigen target EsxA (ESAT-6) and the 10 kDa culture filtrate protein EsxB (CFP-10). AuNPs were synthesized using the Turkevich method and characterized by UV-vis spectrophotometer and transmission electron microscope (TEM). The AuNP-detection probe conjugation conditions were determined by comparing the stability of 14 nm AuNPs at different pH conditions, following salt challenge. Thereafter, ESAT-6 and CFP-10 antibodies were conjugated to the AuNPs and used for the colorimetric detection of TB antigens. Selection of the best detection and capture antibody pairs was determined by Dot spotting. The limits of detection (LODs) for the LFIAs were evaluated by dry testing. TEM results showed that the 14 nm AuNPs were mostly spherical and well dispersed. The ESAT-6 LFIA prototype had an LOD of 0.0625 ng/mL versus the CFP-10 with an LOD of 7.69 ng/mL. Compared to other studies in the literature, the LOD was either similar or lower, outperforming them. Moreover, in some of the previous studies, an enrichment/extraction step was required to improve on the LOD. In this study, the LFIAs produced results within 15 min and could be suitable for use at PoCs either in clinics, mobile clinics, hospitals or at home by the end user. However, further studies need to be conducted to validate their use in clinical samples.


Subject(s)
Metal Nanoparticles , Mycobacterium tuberculosis , Antigens, Bacterial/metabolism , Bacterial Proteins/metabolism , Gold , Immunoassay , Antibodies/metabolism
2.
Diagnostics (Basel) ; 12(8)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36010323

ABSTRACT

The current levels of breast cancer in African women have contributed to the high mortality rates among them. In South Africa, the incidence of breast cancer is also on the rise due to changes in behavioural and biological risk factors. Such low survival rates can be attributed to the late diagnosis of the disease due to a lack of access and the high costs of the current diagnostic tools. Breast cancer is asymptomatic at early stages, which is the best time to detect it and intervene to prevent high mortality rates. Proper risk assessment, campaigns, and access to adequate healthcare need to be prioritised among patients at an early stage. Early detection of breast cancer can significantly improve the survival rate of breast cancer patients, since therapeutic strategies are more effective at this stage. Early detection of breast cancer can be achieved by developing devices that are simple, sensitive, low-cost, and employed at point-of-care (POC), especially in low-income countries (LICs). Nucleic-acid-based lateral flow assays (NABLFAs) that combine molecular detection with the immunochemical visualisation principles, have recently emerged as tools for disease diagnosis, even for low biomarker concentrations. Detection of circulating genetic biomarkers in non-invasively collected biological fluids with NABLFAs presents an appealing and suitable method for POC testing in resource-limited regions and/or LICs. Diagnosis of breast cancer at an early stage will improve the survival rates of the patients. This review covers the analysis of the current state of NABLFA technologies used in developing countries to reduce the scourge of breast cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...