Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Naunyn Schmiedebergs Arch Pharmacol ; 393(9): 1729-1738, 2020 09.
Article in English | MEDLINE | ID: mdl-32388602

ABSTRACT

Various NMDA-receptor antagonists have been investigated for their therapeutic potential in Alzheimer's disease with memantine shown to be safe and with relative efficacy. There is, however, need to develop novel drugs to counter tolerance and with better efficacy in ameliorating neurodegeneration. We have shown neurodegeneration in different models of vanadium-exposed mice. This study was designed to evaluate and ascertain the potency of three novel NMDA-receptor antagonists (Compounds A, B and C) to ameliorate neurodegeneration in vanadium-exposed mice. One-month-old mice (n = 6) received sterile water (control) and another group (n = 6) was treated with vanadium (3 mg/kg sodium metavanadate) intraperitoneally for 1 month. Three other groups (n = 6) received vanadium and compounds A, B and C (4.35 mg/kg, 30 mg/kg and 100 mg/kg, respectively) simultaneously for the same period. Assessment of pathologies and neurodegeneration in different brain regions was done to test the ameliorative effects of the 3 antagonists using different immunohistochemical markers. Vanadium exposure resulted in reduced calbindin expression and pyknosis of Purkinje cells, cell loss and destruction of apical dendrites with greater percentage of cytoplasmic vacuolations, morphological alterations characterized by cell clustering and multiple layering patterns in the Purkinje cell layer. In addition, the observed degeneration included demyelination, increased GFAP-immunoreactive cells and microgliosis. Simultaneous administration of the compounds to vanadium-exposed mice resulted in the preservation of cellular integrity in the same anatomical regions and restoration of the cells' vitality with reduced astroglial and microglial activation.


Subject(s)
Excitatory Amino Acid Antagonists/pharmacology , Nerve Degeneration , Neurotoxicity Syndromes/prevention & control , Purkinje Cells/drug effects , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Calbindins/metabolism , Cell Death/drug effects , Disease Models, Animal , Glial Fibrillary Acidic Protein/metabolism , Mice , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/pathology , Purkinje Cells/metabolism , Purkinje Cells/pathology , Receptors, N-Methyl-D-Aspartate/metabolism , Vanadates
SELECTION OF CITATIONS
SEARCH DETAIL
...