Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(48): 45834-45843, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38075762

ABSTRACT

The nanohardness and Young's modulus of Pb1-xCdxTe single crystals prepared by the self-selecting vapor growth (SSVG) method and thick, MBE-grown layers with a total Cd content of up to 7% metal atoms were studied using the nanoindentation technique; the nanohardness and Young's modulus were calculated by the Oliver and Pharr method. Significant hardening of SSVG crystals with increasing number of Cd atoms replacing Pb atoms in the formed solid solution was observed, and low anisotropy of the nanohardness and Young's modulus were found. The CdTe solubility limit in the solid solution grown using an MBE equal to 2.1% was demonstrated; even for the significantly higher total Cd concentration in the layer, the possible presence of precipitates was not detected. Significant differences were found for both the energy of elastic crystal deformation and Young's modulus determined for samples grown using the two methods. An increase in nanohardness with an increase in the number of Cd atoms outside the cation sublattice was shown. The different ratios of hardening mechanisms acting simultaneously in the analyzed crystals in various ranges of Cd concentrations were demonstrated and discussed. The observed effects were attributed to the much higher concentration of point defects in MBE-grown layers than in SSVG crystals, in particular, the interstitial Cd-Te vacancy complexes effectively hampering nucleation and propagation of dislocations in the former case.

2.
J Phys Condens Matter ; 34(12)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34915463

ABSTRACT

We have performed electron transport and angle-resolved photo-emission spectroscopy (ARPES) measurements on single crystals of transition metal dipnictide TaAs2cleaved along the (2¯01) surface which has the lowest cleavage energy. A Fourier transform of the Shubnikov-de Haas oscillations shows four different peaks whose angular dependence was studied with respect to the angle between magnetic field and the [2¯01] direction. The results indicate elliptical shape of the Fermi surface cross-sections. Additionally, a mobility spectrum analysis was carried out, which also reveals at least four types of carriers contributing to the conductance (two kinds of electrons and two kinds of holes). ARPES spectra were taken on freshly cleaved (2¯01) surface and it was found that bulk states pockets at constant energy surface are elliptical, which confirms the magnetotransport angle dependent studies. First-principles calculations support the interpretation of the experimental results. The theoretical calculations better reproduce the ARPES data if the theoretical Fermi level (FL) is increased, which is due to a small n-doping of the samples. This shifts the FL closer to the Dirac point, allowing investigating the physics of the Dirac and Weyl points, making this compound a platform for the investigation of the Dirac and Weyl points in three-dimensional materials.

3.
Sci Rep ; 7(1): 7428, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28785047

ABSTRACT

Due to their broadband nonlinear optical properties, low-dimensional materials are widely used for pulse generation in fiber and solid-state lasers. Here we demonstrate novel materials, Bi2Te2Se (BTS) and Sn-doped Bi2Te2Se (BSTS), which can be used as a universal saturable absorbers for distinct spectral regimes. The material was mechanically exfoliated from a bulk single-crystal and deposited onto a side-polished fiber. We have performed characterization of the fabricated devices and employed them in polarization-maintaining ytterbium- and erbium-doped fiber lasers. This enabled us to obtain self-starting passively Q-switched regime at 1 µm and 1.56 µm. The oscillators emitted stable, linearly polarized radiation with the highest single pulse energy approaching 692 nJ. Both lasers are characterized by the best performance observed in all-polarization maintaining Q-switched fiber lasers with recently investigated new saturable absorbers, which was enabled by a very high damage threshold of the devices. This demonstrates the great potential of the investigated materials for the ultrafast photonics community.

SELECTION OF CITATIONS
SEARCH DETAIL
...