Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Front Neurosci ; 15: 628403, 2021.
Article in English | MEDLINE | ID: mdl-33642985

ABSTRACT

Evidence suggests that angiotensin receptor blockers (ARBs) could be beneficial for Alzheimer's disease (AD) patients independent of any effects on hypertension. However, studies in rodent models directly testing the activity of ARB treatment on behavior and AD-relevent pathology including neuroinflammation, Aß levels, and cerebrovascular function, have produced mixed results. APOE4 is a major genetic risk factor for AD and has been linked to many of the same functions as those purported to be modulated by ARB treatment. Therefore, evaluating the effects of ARB treatment on behavior and AD-relevant pathology in mice that express human APOE4 could provide important information on whether to further develop ARBs for AD therapy. In this study, we treated female and male mice that express the human APOE4 gene in the absence (E4FAD-) or presence (E4FAD+) of high Aß levels with the ARB prodrug candesartan cilexetil for a duration of 4 months. Compared to vehicle, candesartan treatment resulted in greater memory-relevant behavior and higher hippocampal presynaptic protein levels in female, but not male, E4FAD- and E4FAD+ mice. The beneficial effects of candesartan in female E4FAD- and E4FAD+ mice occurred in tandem with lower GFAP and Iba1 levels in the hippocampus, whereas there were no effects on markers of cerebrovascular function and Aß levels. Collectively, these data imply that the effects of ARBs on AD-relevant pathology may be modulated in part by the interaction between APOE genotype and biological sex. Thus, the further development of ARBs could provide therapeutic options for targeting neuroinflammation in female APOE4 carriers.

2.
J Med Chem ; 63(19): 11085-11099, 2020 10 08.
Article in English | MEDLINE | ID: mdl-32886512

ABSTRACT

Filoviridae, including Ebola (EBOV) and Marburg (MARV) viruses, are emerging pathogens that pose a serious threat to public health. No agents have been approved to treat filovirus infections, representing a major unmet medical need. The selective estrogen receptor modulator (SERM) toremifene was previously identified from a screen of FDA-approved drugs as a potent EBOV viral entry inhibitor, via binding to EBOV glycoprotein (GP). A focused screen of ER ligands identified ridaifen-B as a potent dual inhibitor of EBOV and MARV. Optimization and reverse-engineering to remove ER activity led to a novel compound 30 (XL-147) showing potent inhibition against infectious EBOV Zaire (0.09 µM) and MARV (0.64 µM). Mutagenesis studies confirmed that inhibition of EBOV viral entry is mediated by the direct interaction with GP. Importantly, compound 30 displayed a broad-spectrum antifilovirus activity against Bundibugyo, Tai Forest, Reston, and Menglà viruses and is the first submicromolar antiviral agent reported for some of these strains, therefore warranting further development as a pan-filovirus inhibitor.


Subject(s)
Antiviral Agents/pharmacology , Filoviridae/drug effects , Receptors, Estrogen/drug effects , Antiviral Agents/chemistry , Cell Line, Tumor , Drug Evaluation, Preclinical , Filoviridae/physiology , Humans , Ligands , Membrane Fusion/drug effects , Models, Biological , Structure-Activity Relationship
3.
J Med Chem ; 63(13): 7186-7210, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32453591

ABSTRACT

Acquired resistance to fulvestrant and palbociclib is a new challenge to treatment of estrogen receptor positive (ER+) breast cancer. ER is expressed in most resistance settings; thus, bromodomain and extra-terminal protein inhibitors (BETi) that target BET-amplified ER-mediated transcription have therapeutic potential. Novel pyrrolopyridone BETi leveraged novel interactions with L92/L94 confirmed by a cocrystal structure of 27 with BRD4. Optimization of BETi using growth inhibition in fulvestrant-resistant (MCF-7:CFR) cells was confirmed in endocrine-resistant, palbociclib-resistant, and ESR1 mutant cell lines. 27 was more potent in MCF-7:CFR cells than six BET inhibitors in clinical trials. Transcriptomic analysis differentiated 27 from the benchmark BETi, JQ-1, showing downregulation of oncogenes and upregulation of tumor suppressors and apoptosis. The therapeutic approach was validated by oral administration of 27 in orthotopic xenografts of endocrine-resistant breast cancer in monotherapy and in combination with fulvestrant. Importantly, at an equivalent dose in rats, thrombocytopenia was mitigated.


Subject(s)
Breast Neoplasms/pathology , Drug Resistance, Neoplasm/drug effects , Fulvestrant/pharmacology , Piperazines/pharmacology , Pyridines/pharmacology , Pyridones/chemistry , Pyridones/pharmacology , Transcription Factors/antagonists & inhibitors , Animals , Breast Neoplasms/metabolism , Humans , MCF-7 Cells , Mice , Models, Molecular , Protein Domains , Pyridones/pharmacokinetics , Receptors, Estrogen/metabolism , Tissue Distribution , Transcription Factors/chemistry , Xenograft Model Antitumor Assays
4.
J Med Chem ; 63(12): 6547-6560, 2020 06 25.
Article in English | MEDLINE | ID: mdl-31682434

ABSTRACT

Pharmacological activation of NRF2 (nuclear factor erythroid 2-related factor 2) arises from blocking the interaction of NRF2 with its negative regulator, KEAP1 (Kelch-like ECH-associated protein 1). We previously reported an isoquinoline-based NRF2 activator, but this compound showed negative logD7.4 and a -2 charge at physiological pH, which may have limited its membrane permeability. In this work, we report potent, metabolically stable analogs that result from replacing a carboxymethyl group at the 4-position with a fluoroalkyl group.


Subject(s)
Drug Discovery , Isoquinolines/chemistry , Isoquinolines/pharmacology , Kelch-Like ECH-Associated Protein 1/antagonists & inhibitors , NF-E2-Related Factor 2/antagonists & inhibitors , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Drug Stability , Humans , Protein Binding
5.
J Med Chem ; 62(24): 11301-11323, 2019 12 26.
Article in English | MEDLINE | ID: mdl-31746603

ABSTRACT

The clinical steroidal selective estrogen receptor (ER) degrader (SERD), fulvestrant, is effective in metastatic breast cancer, but limited by poor pharmacokinetics, prompting the development of orally bioavailable, nonsteroidal SERDs, currently in clinical trials. These trials address local breast cancer as well as peripheral metastases, but patients with brain metastases are generally excluded because of the lack of blood-brain barrier penetration. A novel family of benzothiophene SERDs with a basic amino side arm (B-SERDs) was synthesized. Proteasomal degradation of ERα was induced by B-SERDs that achieved the objectives of oral and brain bioavailability, while maintaining high affinity binding to ERα and both potency and efficacy comparable to fulvestrant in cell lines resistant to endocrine therapy or bearing ESR1 mutations. A novel 3-oxyazetidine side chain was designed, leading to 37d, a B-SERD that caused endocrine-resistant ER+ tumors to regress in a mouse orthotopic xenograft model.


Subject(s)
Breast Neoplasms/drug therapy , Drug Design , Drug Resistance, Neoplasm/drug effects , Estrogen Receptor alpha/metabolism , Proteolysis/drug effects , Selective Estrogen Receptor Modulators/chemical synthesis , Selective Estrogen Receptor Modulators/pharmacology , Thiophenes/chemical synthesis , Thiophenes/pharmacology , Animals , Apoptosis , Aromatase Inhibitors/pharmacology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation , Estrogen Receptor alpha/genetics , Female , Humans , Mice , Mice, Inbred C57BL , Mice, Nude , Mutation , Rats , Rats, Sprague-Dawley , Selective Estrogen Receptor Modulators/pharmacokinetics , Thiophenes/chemistry , Thiophenes/pharmacokinetics , Tissue Distribution , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
6.
J Med Chem ; 61(17): 8029-8047, 2018 09 13.
Article in English | MEDLINE | ID: mdl-30122040

ABSTRACT

Activators of nuclear factor-erythroid 2-related factor 2 (NRF2) could lead to promising therapeutics for prevention and treatment of oxidative stress and inflammatory disorders. Ubiquitination and subsequent degradation of the transcription factor NRF2 is mediated by Kelch-like ECH-associated protein-1 (KEAP1). Inhibition of the KEAP1/NRF2 interaction with small molecules leads to NRF2 activation. Previously, we and others described naphthalene-based NRF2 activators, but the 1,4-diaminonaphthalene scaffold may not represent a drug-like scaffold. Paying particular attention to aqueous solubility, metabolic stability, potency, and mutagenicity, we modified a previously known, naphthalene-based nonelectrophilic NRF2 activator to give a series of non-naphthalene and heterocyclic scaffolds. We found that, compared to previously reported naphthalene-based compounds, a 1,4-isoquinoline scaffold provides a better mutagenic profile without sacrificing potency, stability, or solubility.


Subject(s)
Gene Expression Regulation/drug effects , Isoquinolines/pharmacology , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Naphthalenes/chemistry , Protein Interaction Domains and Motifs/drug effects , Small Molecule Libraries/pharmacology , Cells, Cultured , Humans , Isoquinolines/chemistry , Kelch-Like ECH-Associated Protein 1/chemistry , Kelch-Like ECH-Associated Protein 1/genetics , Keratinocytes/cytology , Keratinocytes/drug effects , Keratinocytes/metabolism , Mutagenesis , NF-E2-Related Factor 2/chemistry , NF-E2-Related Factor 2/genetics , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics
7.
Environ Sci Technol ; 51(6): 3187-3196, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28195711

ABSTRACT

Layered Mn oxide minerals (phyllomanganates) often control trace metal fate in natural systems. The strong uptake of metals such as Ni and Zn by phyllomanganates results from adsorption on or incorporation into vacancy sites. Mn(II) also binds to vacancies and subsequent comproportionation with structural Mn(IV) may alter sheet structures by forming larger and distorted Mn(III)O6 octahedra. Such Mn(II)-phyllomanganate reactions may thus alter metal uptake by blocking key reactive sites. Here we investigate the effect of Mn(II) on Ni and Zn binding to phyllomanganates of varying initial vacancy content (δ-MnO2, hexagonal birnessite, and triclinic birnessite) at pH 4 and 7 under anaerobic conditions. Dissolved Mn(II) decreases macroscopic Ni and Zn uptake at pH 4 but not pH 7. Extended X-ray absorption fine structure spectroscopy demonstrates that decreased uptake at pH 4 corresponds with altered Ni and Zn adsorption mechanisms. These metals transition from binding in the interlayer to sheet edges, with Zn increasing its tetrahedrally coordinated fraction. These effects on metal uptake and binding correlate with Mn(II)-induced structural changes, which are more substantial at pH 4 than 7. Through these structural effects and the pH-dependence of Mn(II)-metal competitive adsorption, system pH largely controls metal binding to phyllomanganates in the presence of dissolved Mn(II).


Subject(s)
Oxidation-Reduction , Zinc , Adsorption , Metals/chemistry , X-Ray Absorption Spectroscopy
8.
Arch Biochem Biophys ; 505(2): 160-70, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-20933495

ABSTRACT

The relationship between membrane protein structure and thermal stability has been examined in the reaction centre from the bacterium Rhodobacter sphaeroides, a complex membrane protein comprising three polypeptide chains and 10 cofactors. The core of this protein exhibits an approximate twofold symmetry, the cofactors being held in two membrane-spanning branches by two polypeptides, termed L and M, that have very similar folds. In assays of the thermal stability of wild-type and mutant reaction centres embedded in the native bilayer membrane, replacement of a Phe at position 197 of the M polypeptide by His produced an increase in stability, whereas an opposing replacement of His by Phe at the symmetrical position 168 of the L-polypeptide produced a decrease in stability. In light of the known X-ray crystal structures of wild-type and mutant variants of this protein, and further mutagenesis, it is concluded that these stability changes result from the introduction or removal, respectively, of a hydrogen bond between the side-chain of the His and that of an Asn located two positions along the M or L polypeptide chain, in addition to a hydrogen bond between the His side-chain and an adjacent bacteriochlorophyll cofactor.


Subject(s)
Membrane Proteins/chemistry , Membrane Proteins/metabolism , Peptides/chemistry , Photosynthetic Reaction Center Complex Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins/metabolism , Temperature , Coenzymes/chemistry , Coenzymes/metabolism , Enzyme Stability , Hydrogen Bonding , Kinetics , Membrane Proteins/genetics , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Photosynthetic Reaction Center Complex Proteins/genetics , Protein Conformation , Protein Engineering , Protein Unfolding , Rhodobacter sphaeroides
9.
Biochim Biophys Acta ; 1807(1): 95-107, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20937243

ABSTRACT

The PufX polypeptide is an integral component of some photosynthetic bacterial reaction center-light harvesting 1 (RC-LH1) core complexes. Many aspects of the structure of PufX are unresolved, including the conformation of its long membrane-spanning helix and whether C-terminal processing occurs. In the present report, NMR data recorded on the Rhodobacter sphaeroides PufX in a detergent micelle confirmed previous conclusions derived from equivalent data obtained in organic solvent, that the α-helix of PufX adopts a bent conformation that would allow the entire helix to reside in the membrane interior or at its surface. In support of this, it was found through the use of site-directed mutagenesis that increasing the size of a conserved glycine on the inside of the bend in the helix was not tolerated. Possible consequences of this bent helical structure were explored using a series of N-terminal deletions. The N-terminal sequence ADKTIFNDHLN on the cytoplasmic face of the membrane was found to be critical for the formation of dimers of the RC-LH1 complex. It was further shown that the C-terminus of PufX is processed at an early stage in the development of the photosynthetic membrane. A model in which two bent PufX polypeptides stabilise a dimeric RC-LH1 complex is presented, and it is proposed that the N-terminus of PufX from one half of the dimer engages in electrostatic interactions with charged residues on the cytoplasmic surface of the LH1α and ß polypeptides on the other half of the dimer.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/metabolism , Rhodobacter sphaeroides/enzymology , Amino Acid Sequence , Bacterial Proteins/isolation & purification , Conserved Sequence , Dimerization , Intracellular Membranes/enzymology , Light-Harvesting Protein Complexes/isolation & purification , Magnetic Resonance Spectroscopy/methods , Micelles , Microscopy, Atomic Force/methods , Models, Molecular , Molecular Sequence Data , Photosynthesis , Protein Conformation , Rhodobacter sphaeroides/growth & development , Rhodobacter sphaeroides/ultrastructure , Sequence Alignment , Sequence Homology, Amino Acid
10.
Biochim Biophys Acta ; 1797(11): 1812-9, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20646993

ABSTRACT

In purple photosynthetic bacteria the initial steps of light energy transduction take place in an RC-LH1 complex formed by the photochemical reaction centre (RC) and the LH1 light harvesting pigment-protein. In Rhodobacter sphaeroides, the RC-LH1 complex assembles in a dimeric form in which two RCs are surrounded by an S-shaped LH1 antenna. There is currently debate over the detailed architecture of this dimeric RC-LH1 complex, with particular emphasis on the location and precise function of a minor polypeptide component termed PufX. It has been hypothesised that the membrane-spanning helical region of PufX contains a GxxxG dimerisation motif that facilitates the formation of a dimer of PufX at the interface of the RC-LH1 dimer, and more specifically that the formation of this PufX dimer seeds assembly of the remaining RC-LH1 dimer (J. Busselez et al., 2007). In the present work this hypothesis was tested by site directed mutagenesis of the glycine residues proposed to form the GxxxG motif. Mutation of these glycines to leucine did not decrease the propensity of the RC-LH1 complex to assemble in a dimeric form, as would be expected from experimental studies of the effect of mutation on GxxxG motifs in other membrane proteins. Indeed increased yields of dimer were seen in two of the glycine-to-leucine mutants constructed. It is concluded that the PufX from Rhodobacter sphaeroides does not contain a genuine GxxxG helix dimerisation motif.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/metabolism , Protein Multimerization , Rhodobacter sphaeroides/metabolism , Amino Acid Motifs/genetics , Amino Acid Sequence , Bacterial Proteins/genetics , Light-Harvesting Protein Complexes/genetics , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation/genetics , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Tertiary , Rhodobacter sphaeroides/genetics , Rhodobacter sphaeroides/growth & development , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...