Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Science ; 382(6671): 679-683, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37943897

ABSTRACT

Interactions between plants and herbivores are central in most ecosystems, but their strength is highly variable. The amount of variability within a system is thought to influence most aspects of plant-herbivore biology, from ecological stability to plant defense evolution. Our understanding of what influences variability, however, is limited by sparse data. We collected standardized surveys of herbivory for 503 plant species at 790 sites across 116° of latitude. With these data, we show that within-population variability in herbivory increases with latitude, decreases with plant size, and is phylogenetically structured. Differences in the magnitude of variability are thus central to how plant-herbivore biology varies across macroscale gradients. We argue that increased focus on interaction variability will advance understanding of patterns of life on Earth.


Subject(s)
Biological Variation, Population , Herbivory , Plant Defense Against Herbivory , Plants , Ecosystem , Phylogeny , Animals , Biological Evolution
2.
Mol Phylogenet Evol ; 150: 106859, 2020 09.
Article in English | MEDLINE | ID: mdl-32497831

ABSTRACT

Parapanteles Ashmead (Braconidae: Microgastrinae) is a medium-sized genus of microgastrine wasps that was erected over a century ago and lacks a unique synapomorphic character, and its monophyly has not been tested by any means. Parapanteles usually are parasitoids of large, unconcealed caterpillars (macrolepidoptera) and have been reared from an unusually large diversity of hosts for a relatively small microgastrine genus. We used Cytochrome Oxidase I sequences ("DNA barcodes") available for Parapanteles and other microgastrines to sample the generic diversity of described and undescribed species currently placed in Parapanteles, and then sequenced four additional genes for this subsample (wingless, elongation factor 1-alpha, ribosomal subunit 28s, and NADH dehydrogenase subunit 1). We constructed individual gene trees and concatenated Bayesian and maximum-likelihood phylogenies for this 5-gene subsample. In these phylogenies, most Parapanteles species formed a monophyletic clade within another genus, Dolichogenidea, while the remaining Parapanteles species were recovered polyphyletically within several other genera. The latter likely represent misidentified members of other morphologically similar genera. Species in the monophyletic clade containing most Parapanteles parasitized caterpillars from only five families - Erebidae (Arctiinae), Geometridae, Saturniidae, Notodontidae, and Crambidae. We do not make any formal taxonomic decisions here because we were not able to include representatives of type species for Parapanteles or other relevant genera, and because we feel such decisions should be reserved until a comprehensive morphological analysis of the boundaries of these genera is accomplished.


Subject(s)
Hymenoptera/classification , Animals , Bayes Theorem , Electron Transport Complex IV/classification , Electron Transport Complex IV/genetics , Hymenoptera/genetics , Insect Proteins/classification , Insect Proteins/genetics , NADH Dehydrogenase/classification , NADH Dehydrogenase/genetics , Phylogeny , RNA, Ribosomal, 28S/classification , RNA, Ribosomal, 28S/genetics
3.
Curr Opin Insect Sci ; 14: 73-80, 2016 04.
Article in English | MEDLINE | ID: mdl-27436650

ABSTRACT

Ants are keystone predators in terrestrial trophic cascades. Addressing ants' roles in multitrophic interactions across regional gradients is important for understanding mechanisms behind range limits of species. We present four hypotheses of trophic dynamics occurring when ants are rare: first, there is a shift in predator communities; second, plants decrease investments in ant attraction and increase production of secondary metabolites; third, lower herbivory at high elevations allows plants to tolerate herbivory; and fourth, distribution of ant-plants can be limited based on ant abundance. Conducting experiments on multitrophic effects of ants across elevational gradients, and incorporating these results to ecological niche modeling (ENM) will improve our knowledge of the impacts of global change on ants, trophic interactions, and biodiversity.


Subject(s)
Ants/physiology , Ecosystem , Herbivory , Predatory Behavior/physiology , Temperature , Animals , Host-Parasite Interactions , Plants/parasitology
4.
J Chem Ecol ; 39(11-12): 1373-84, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24190024

ABSTRACT

Little is known about the evolution, diversity, and functional significance of secondary metabolites in reproductive plant parts, particularly fruits and seeds of plants in natural ecosystems. We compared the concentration and diversity of amides among six tissue types of Piper reticulatum: leaves, roots, flowers, unripe fruit pulp, ripe fruit pulp, and seeds. This represents the first detailed description of amides in P. reticulatum, and we identified 10 major and 3 minor compounds using GC/MS and NMR analysis. We also detected 30 additional unidentified minor amide components, many of which were restricted to one or a few plant parts. Seeds had the highest concentrations and the highest diversity of amides. Fruit pulp had intermediate concentrations and diversity that decreased with ripening. Leaves and roots had intermediate concentrations, but the lowest chemical diversity. In addition, to investigate the potential importance of amide concentration and diversity in plant defense, we measured leaf herbivory and seed damage in natural populations, and examined the relationships between amide occurrence and plant damage. We found no correlations between leaf damage and amide diversity or concentration, and no correlation between seed damage and amide concentration. The only relationship we detected was a negative correlation between seed damage and amide diversity. Together, our results provide evidence that there are strong selection pressures for fruit and seed defense independent of selection in vegetative tissues, and suggest a key role for chemical diversity in fruit-frugivore interactions.


Subject(s)
Amides/analysis , Fruit/chemistry , Piper , Amides/metabolism , Flowers/chemistry , Flowers/metabolism , Fruit/metabolism , Herbivory , Piper/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Roots/chemistry , Plant Roots/metabolism
5.
Ecology ; 93(5): 981-91, 2012 May.
Article in English | MEDLINE | ID: mdl-22764485

ABSTRACT

Ecological specialization is a fundamental and well-studied concept, yet its great reach and complexity limit current understanding in important ways. More than 20 years after the publication of D. J. Futuyma and G. Moreno's oft-cited, major review of the topic, we synthesize new developments in the evolution of ecological specialization. Using insect-plant interactions as a model, we focus on important developments in four critical areas: genetic architecture, behavior, interaction complexity, and macroevolution. We find that theory based on simple genetic trade-offs in host use is being replaced by more subtle and complex pictures of genetic architecture, and multitrophic interactions have risen as a necessary framework for understanding specialization. A wealth of phylogenetic data has made possible a more detailed consideration of the macroevolutionary dimension of specialization, revealing (among other things) bidirectionality in transitions between generalist and specialist lineages. Technological advances, including genomic sequencing and analytical techniques at the community level, raise the possibility that the next decade will see research on specialization spanning multiple levels of biological organization in non-model organisms, from genes to populations to networks of interactions in natural communities. Finally, we offer a set of research questions that we find to be particularly pressing and fruitful for future research on ecological specialization.


Subject(s)
Biological Evolution , Ecosystem , Insecta/genetics , Insecta/physiology , Plants/genetics , Adaptation, Physiological/genetics , Animals , Behavior, Animal , Genetic Variation , Herbivory , Oviposition
6.
J Evol Biol ; 25(3): 532-46, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22268676

ABSTRACT

Host-parasite systems have been models for understanding the connection between shifts in resource use and diversification. Despite theoretical expectations, ambiguity remains regarding the frequency and importance of host switches as drivers of speciation in herbivorous insects and their parasitoids. We examine phylogenetic patterns with multiple genetic markers across three trophic levels using a diverse lineage of geometrid moths (Eois), specialist braconid parasitoids (Parapanteles) and plants in the genus Piper. Host-parasite associations are mapped onto phylogenies, and levels of cospeciation are assessed. We find nonrandom patterns of host use within both the moth and wasp phylogenies. The moth-plant associations in particular are characterized by small radiations of moths associated with unique host plants in the same geographic area (i.e. closely related moths using the same host plant species). We suggest a model of diversification that emphasizes an interplay of factors including host shifts, vicariance and adaptation to intraspecific variation within hosts.


Subject(s)
Food Chain , Host-Pathogen Interactions/genetics , Moths/genetics , Moths/parasitology , Piper/genetics , Trees , Wasps/genetics , Animals , Base Sequence , Bayes Theorem , Computational Biology , Costa Rica , DNA, Mitochondrial/genetics , Ecuador , Evolution, Molecular , Genetic Speciation , Host-Pathogen Interactions/physiology , Larva/parasitology , Larva/physiology , Models, Genetic , Molecular Sequence Data , Moths/classification , Moths/physiology , Phylogeny , Sequence Analysis, DNA , Wasps/physiology
7.
J Chem Ecol ; 34(4): 558-74, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18317843

ABSTRACT

Plants defend themselves against herbivores and pathogens with a suite of morphological, phenological, biochemical, and biotic defenses, each of which is presumably costly. The best studied are allocation costs that involve trade-offs in investment of resources to defense versus other plant functions. Decreases in growth or reproductive effort are the costs most often associated with antiherbivore defenses, but trade-offs among different defenses may also occur within a single plant species. We examined trade-offs among defenses in closely related tropical rain forest shrubs (Piper cenocladum, P. imperiale, and P. melanocladum) that possess different combinations of three types of defense: ant mutualists, secondary compounds, and leaf toughness. We also examined the effectiveness of different defenses and suites of defenses against the most abundant generalist and specialist Piper herbivores. For all species examined, leaf toughness was the most effective defense, with the toughest species, P. melanocladum, receiving the lowest incidence of total herbivory, and the least tough species, P. imperiale, receiving the highest incidence. Although variation in toughness within each species was substantial, there were no intraspecific relationships between toughness and herbivory. In other Piper studies, chemical and biotic defenses had strong intraspecific negative correlations with herbivory. A wide variety of defensive mechanisms was quantified in the three Piper species studied, ranging from low concentrations of chemical defenses in P. imperiale to a complex suite of defenses in P. cenocladum that includes ant mutualists, secondary metabolites, and moderate toughness. Ecological costs were evident for the array of defensive mechanisms within these Piper species, and the differences in defensive strategies among species may represent evolutionary trade-offs between costly defenses.


Subject(s)
Feeding Behavior , Piper/physiology , Animals , Imides/isolation & purification , Piper/chemistry , Piper/classification , Species Specificity , Trees
8.
Nature ; 448(7154): 696-9, 2007 Aug 09.
Article in English | MEDLINE | ID: mdl-17687325

ABSTRACT

For numerous taxa, species richness is much higher in tropical than in temperate zone habitats. A major challenge in community ecology and evolutionary biogeography is to reveal the mechanisms underlying these differences. For herbivorous insects, one such mechanism leading to an increased number of species in a given locale could be increased ecological specialization, resulting in a greater proportion of insect species occupying narrow niches within a community. We tested this hypothesis by comparing host specialization in larval Lepidoptera (moths and butterflies) at eight different New World forest sites ranging in latitude from 15 degrees S to 55 degrees N. Here we show that larval diets of tropical Lepidoptera are more specialized than those of their temperate forest counterparts: tropical species on average feed on fewer plant species, genera and families than do temperate caterpillars. This result holds true whether calculated per lepidopteran family or for a caterpillar assemblage as a whole. As a result, there is greater turnover in caterpillar species composition (greater beta diversity) between tree species in tropical faunas than in temperate faunas. We suggest that greater specialization in tropical faunas is the result of differences in trophic interactions; for example, there are more distinct plant secondary chemical profiles from one tree species to the next in tropical forests than in temperate forests as well as more diverse and chronic pressures from natural enemy communities.


Subject(s)
Diet , Ecosystem , Lepidoptera/physiology , Trees , Tropical Climate , Animals , Biodiversity , Larva/physiology , Species Specificity
9.
Proc Natl Acad Sci U S A ; 102(48): 17384-7, 2005 Nov 29.
Article in English | MEDLINE | ID: mdl-16293686

ABSTRACT

Insect outbreaks are expected to increase in frequency and intensity with projected changes in global climate through direct effects of climate change on insect populations and through disruption of community interactions. Although there is much concern about mean changes in global climate, the impact of climatic variability itself on species interactions has been little explored. Here, we compare caterpillar-parasitoid interactions across a broad gradient of climatic variability and find that the combined data in 15 geographically dispersed databases show a decrease in levels of parasitism as climatic variability increases. The dominant contribution to this pattern by relatively specialized parasitoid wasps suggests that climatic variability impairs the ability of parasitoids to track host populations. Given the important role of parasitoids in regulating insect herbivore populations in natural and managed systems, we predict an increase in the frequency and intensity of herbivore outbreaks through a disruption of enemy-herbivore dynamics as climates become more variable.


Subject(s)
Greenhouse Effect , Lepidoptera/parasitology , Wasps/physiology , Animals , Geography , Host-Parasite Interactions , Larva/parasitology , Larva/physiology , Lepidoptera/physiology , Population Dynamics , Regression Analysis
10.
J Chem Ecol ; 29(11): 2499-514, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14682530

ABSTRACT

The tropical rainforest shrub Piper cenocladum, which is normally defended against herbivores by a mutualistic ant, contains three amides that have various defensive functions. While the ants are effective primarily against specialist herbivores, we hypothesized that these secondary compounds would be effective against a wider range of insects, thus providing a broad array of defenses against herbivores. We also tested whether a mixture of amides would be more effective against herbivores than individual amides. Diets spiked with amides were offered to five herbivores: a naïve generalist caterpillar (Spodoptera frugiperda), two caterpillar species that are monophagous on P. cenocladum (Eois spp.), leaf-cutting ants (Atta cephalotes), and an omnivorous ant (Paraponera clavata). Amides had negative effects on all insects, whether they were naïve, experienced, generalized, or specialized feeders. For Spodoptera, amide mixtures caused decreased pupal weights and survivorship and increased development times. Eois pupal weights, larval mass gain, and development times were affected by additions of individual amides, but increased parasitism and lower survivorship were caused only by the amide mixture. Amide mixtures also deterred feeding by the two ant species, and crude plant extracts were strongly deterrent to P. clavata. The mixture of all three amides had the most dramatic deterrent and toxic effects across experiments, with the effects usually surpassing expected additive responses, indicating that these compounds can act synergistically against a wide array of herbivores.


Subject(s)
Amides/isolation & purification , Amides/pharmacology , Piper/chemistry , Piper/growth & development , Plants, Edible , Animals , Ants , Feeding Behavior , Larva , Moths , Population Dynamics
11.
J Chem Ecol ; 27(3): 581-92, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11441447

ABSTRACT

Ant-plant mutualisms may provide indirect evidence for costs of antiherbivore defenses when plants demonstrate trade-offs between allocating resources and energy into ant attractants versus chemical defenses. We tested the hypothesis that ecological trade-offs in defenses are present in Piper cenocladum. This plant possesses two distinct defenses: food bodies that attract predatory ants that destroy herbivore eggs and amides that deter herbivores. Previous studies have demonstrated that the food bodies in P. cenocladum are an effective defense because the ants deter herbivory by specialist herbivores. Amides in other Piper species have been shown to have toxic qualities, but we tested the additional hypothesis that these amides have an actual defensive function in P. cenocladum. To test for ecological trade-offs between the two putative defenses, fragments of P. cenocladum were examined for the presence of amides both when the plant was producing food bodies and when it was not producing food bodies. Plants with active ant colonies had redundant defenses, producing food bodies and high levels of amides at the same time, but we detected a trade-off in that they had significantly lower levels of amides than did plants with no ants. To test for the defensive value of P. cenocladum amides, we used an ant bioassay and we examined herbivory results from previous experiments with plants that had variable levels of amides. These tests demonstrated that amides are deterrent to omnivorous ants, leaf cutting ants, and orthopterans. In contrast, the resident Pheidole bicornis ants are effective at deterring herbivory by specialist herbivores that oviposit eggs on the plant but not at deterring herbivory by nonresident omnivores. We concluded that although both amides and food body production appear to be costly, redundancy in defenses is necessary to avoid damage by a complex suit of herbivores.


Subject(s)
Ants/physiology , Plant Physiological Phenomena , Amides/analysis , Animals , Costa Rica , Ecology , Multivariate Analysis , Plant Development , Plant Leaves/chemistry , Plants/chemistry
12.
Phytochemistry ; 53(1): 51-4, 2000 Jan.
Article in English | MEDLINE | ID: mdl-10656407

ABSTRACT

A dihydropyridone alkaloid, cenocladamide, and a derivative of piplartine, 4'-desmethylpiplartine were isolated along with piplartine from the leaves of Piper cenocladum. The structures of the new compounds were determined by spectroscopic methods and by comparison to piplartine. Concentrations of these amides in plants with and without ant mutualists, are compared.


Subject(s)
Magnoliopsida/chemistry , Pyridones/chemistry , Gas Chromatography-Mass Spectrometry , Magnetic Resonance Spectroscopy , Plant Leaves/chemistry , Plant Leaves/metabolism , Pyridones/isolation & purification
13.
Proc Natl Acad Sci U S A ; 96(9): 5072-6, 1999 Apr 27.
Article in English | MEDLINE | ID: mdl-10220420

ABSTRACT

To test for direct and indirect effects of a top predator on three lower trophic levels, we conducted two multiyear predator addition experiments in a tropical wet forest. Periodic additions of a top predator (predatory clerid beetle) to a wet forest understory shrub caused a reduction in the predatory beetle's prey (a predatory ant), increased herbivory, and reduced leaf area of the plant. These effects occurred whether beetles were added to naturally occurring shrubs or to reproductive fragments, suggesting fitness effects of top predators through three trophic levels. A correlational study showed that trophic effects of top predators also cascaded to nearby conspecifics in the forest understory. We use trends from understory plant surveys to suggest mechanisms by which these cascades could ultimately affect species diversity in the local plant community.

14.
J Chem Ecol ; 22(8): 1527-39, 1996 Aug.
Article in English | MEDLINE | ID: mdl-24226253

ABSTRACT

We reared larvae ofJunonia coenia Hubner (Nymphalidae) on artificial diets with trace concentrations of iridoid glycosides and on leaf diets with higher concentrations of iridoid glycosides. We offered these caterpillars to predacious ants and observed the effects of the following on predation: diet (artificial vs. leaf), site (ant colonies in dry vs. wet areas), instar (early vs. late), and time (changes in predation over five days). Diet and site were consistently significant predictors of the ants' propensities to reject prey and the caterpillars' abilities to escape predation. Leaf-diet caterpillars escaped more frequently than artificial-diet caterpillars, and ants from dry sites were more likely to reject prey than ants from wet sites. The percentage of iridoid glycosides found in individual caterpillars was also a good predictor of the probability of rejection by predators and prey escape. Caterpillars with higher levels of iridoids were more likely to be rejected and to escape, suggesting that sequestered iridoid glycosides are a defense against predaceous ants.

SELECTION OF CITATIONS
SEARCH DETAIL
...