Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Cells ; 11(14)2022 07 07.
Article in English | MEDLINE | ID: mdl-35883584

ABSTRACT

In this study, we developed a novel Cre/lox71-based system for the controlled transient expression of target genes. We used the bacteriophage P1 Cre recombinase, which harbors a short, highly specific DNA-binding site and does not have endogenous binding sites within mouse or human genomes. Fusing the catalytically inactive form of Cre recombinase and the VP64 transactivation domain (VP16 tetramer), we constructed the artificial transcription factor Cre-VP64. This transcription factor binds to the lox71 sites within the promoter region of the target gene and, therefore, upregulates its expression. We tested the Cre-VP64/lox71 system for the controlled expression of several genes, including growth factors and the genome editor CRISPR/Cas9, and obtained superior efficiency in the regulation of transgene expression, achieving a high expression level upon induction together with low basal activity. This system or its modified forms can be suggested as a novel effective tool for the transitory controlled expression of target genes for functional genomic studies, as well as for gene therapy approaches.


Subject(s)
Gene Editing , Integrases , Animals , Gene Editing/methods , Humans , Integrases/metabolism , Mice , Recombinant Proteins/genetics , Transcription Factors/genetics
2.
Biochim Biophys Acta Mol Cell Res ; 1869(1): 119157, 2022 01.
Article in English | MEDLINE | ID: mdl-34619163

ABSTRACT

Endothelial cells (ECs) degrade the extracellular matrix of vessel walls and contact surrounding cells to facilitate migration during angiogenesis, leading to formation of an EC-tubular network (ETN). Mesenchymal stromal cells (MSC) support ETN formation when co-cultured with ECs, but the mechanism is incompletely understood. We examined the role of the urokinase-type plasminogen activator (uPA) system, i.e. the serine protease uPA, its inhibitor PAI-1, receptor uPAR/CD87, clearance by the low-density lipoprotein receptor-related protein (LRP1) and their molecular partners, in the formation of ETNs supported by adipose tissue-derived MSC. Co-culture of human umbilical vein ECs (HUVEC) with MSC increased mRNA expression levels of uPAR, MMP14, VEGFR2, TGFß1, integrin ß3 and Notch pathway components (Notch1 receptor and ligands: Dll1, Dll4, Jag1) in HUVECs and uPA, uPAR, TGFß1, integrin ß3, Jag1, Notch3 receptor in MSC. Inhibition at several steps in the activation process indicates that uPA, uPAR and LRP1 cross-talk with αv-integrins, VEGFR2 and Notch receptors/ligands to mediate ETN formation in HUVEC-MSC co-culture. The urokinase system mediates ETN formation through the coordinated action of uPAR, uPA's catalytic activity, its binding to uPAR and its nuclear translocation. These studies identify potential targets to help control aberrant angiogenesis with minimal impact on healthy vasculature.


Subject(s)
Human Umbilical Vein Endothelial Cells/metabolism , Mesenchymal Stem Cells/metabolism , Neovascularization, Physiologic , Signal Transduction , Urokinase-Type Plasminogen Activator/metabolism , CD18 Antigens/metabolism , Cells, Cultured , Fibronectins/metabolism , Human Umbilical Vein Endothelial Cells/cytology , Humans , Matrix Metalloproteinase 14/metabolism , Receptors, Notch/metabolism , Receptors, Urokinase Plasminogen Activator/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
3.
Biol Open ; 10(9)2021 09 15.
Article in English | MEDLINE | ID: mdl-34494647

ABSTRACT

Ex vivo, gene therapy is a powerful approach holding great promises for the treatment of both genetic and acquired diseases. Adeno-associated virus (AAV) vectors are a safe and efficient delivery system for modification of mesenchymal stem cells (MSC) that could maximize their therapeutic benefits. Assessment of MSC viability and functional activity after infection with new AAV serotypes is necessary, due to AAV tropism to specific cell types. We infected human and rat adipose-tissue MSC with hybrid AAV-DJ serotype vectors carrying GFP and SCF genes. GFP expression from AAV-DJ was about 1.5-fold superior to that observed with AAV-2 and lasted for at least 21 days as was evaluated by flow cytometry and fluorescence microscopy. AAV-DJ proves to be suitable for the infection of rat and human MSC with a similar efficiency. Infected MSC were still viable but showed a 25-30% growth-rate slowdown. Moreover, we found an increase of SERPINB2 mRNA expression in human MSC while expression of other oxidative stress markers and extracellular matrix proteins was not affected. These results suggest that there is a differential cellular response in MSC infected with AAV viral vectors, which should be taken into account as it can affect the expected outcome for the therapeutic application.


Subject(s)
Dependovirus/genetics , Genetic Therapy , Genetic Vectors/blood , Mesenchymal Stem Cells/virology , Viral Proteins/blood , Animals , Green Fluorescent Proteins/metabolism , Humans , Rats , Serogroup , Stem Cell Factor/metabolism , Viral Tropism/genetics
4.
Front Cell Dev Biol ; 9: 616893, 2021.
Article in English | MEDLINE | ID: mdl-33718358

ABSTRACT

Besides certain exceptions, healing of most tissues in the human body occurs via formation of scar tissue, rather than restoration of lost structures. After extensive acute injuries, this phenomenon substantially limits the possibility of lost function recovery and, in case of chronic injury, it leads to pathological remodeling of organs affected. Managing outcomes of damaged tissue repair is one of the main objectives of regenerative medicine. The first priority for reaching it is comparative investigation of mechanisms responsible for complete restoration of damaged tissues and mechanisms of scarring. However, human body tissues that undergo complete scar-free healing are scarce. The endometrium is a unique mucous membrane in the human body that heals without scarring after various injuries, as well as during each menstrual cycle (i.e., up to 400 times during a woman's life). We hypothesized that absence of scarring during endometrial healing may be associated with tissue-specific features of its stromal cells (SCs) or their microenvironment, since SCs transform into myofibroblasts-the main effector link of scarring. We found that during healing of the endometrium, soluble factors are formed that inhibit the transition of SCs into myofibroblasts. Without influence of these factors, the SCs of the endometrium undergo transformation into myofibroblasts after transforming growth factor ß1 (TGF-ß1) treatment as well as the SCs from tissues that heal by scarring-skin or fat. However, unlike the latter, endometrial SCs organize extracellular matrix (ECM) in a specific way and are not prone to formation of bulky connective tissue structures. Thus, we may suggest that tissue-specific features of endometrial SCs along with effects of soluble factors secreted in utero during menstruation ensure scar-free healing of human endometrium.

5.
Biochimie ; 185: 68-77, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33677034

ABSTRACT

Obesity is a key health problem and is associated with a high risk of type 2 diabetes and other metabolic diseases. Increased weight as well as dysregulation of adipocyte homeostasis are the main drivers of obesity. Pathological adipogenesis plays a central role in obesity-related complications such as type 2 diabetes, hypertension and others. Thus, an understanding of the molecular mechanisms involved in physiological and pathogenic adipogenesis can help to develop new strategies to prevent or cure obesity and related diseases. Previously, genetic polymorphisms in the HHEX gene that encodes the homeobox transcription factor HEX (PRH) were found to be associated with type 2 diabetes and high body mass index at birth by GWAS in distinct human populations. To understand whether HHEX has a regulatory function in adipogenesis, we performed RNAi-mediated knockdown of Hhex in preadipocyte cell line 3T3-L1 in vitro, and studied changes in the efficacy of adipogenesis. We found that Hhex knockdown blocks adipogenesis in preadipocytes in a dose-dependent manner and leads to a significant decrease of PPAR-gamma protein - the main regulator of adipogenesis. We also propose that Hhex can play an important role in adipocyte differentiation by affecting the level of the PPAR-gamma protein. Our study supports the claim that Hhex plays an important role in adipocyte differentiation program and can contribute to fat tissue homeostasis.


Subject(s)
Adipocytes/metabolism , Adipogenesis , Gene Expression Regulation , Homeodomain Proteins/biosynthesis , Transcription Factors/biosynthesis , 3T3-L1 Cells , Animals , Mice
6.
Int J Mol Sci ; 21(12)2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32580466

ABSTRACT

Multipotent stromal cells (MSC) demonstrate remarkable functional heterogeneity; however, its molecular mechanisms remain largely obscure. In this study, we explored MSC response to hormones, which activate Gs-protein / cyclic AMP (cAMP) / protein kinase A (PKA) dependent signaling, at the single cell level using genetically encoded biosensor PKA-Spark. For the first time, we demonstrated that about half of cultured MSCs are not able to activate the cAMP/PKA pathway, possibly due to the limited availability of adenylyl cyclases. Using this approach, we showed that MSC subpopulations responding to various hormones largely overlapped, and the share of responding cells did not exceed 40%. Using clonal analysis, we showed that signaling heterogeneity of MSC could be formed de novo within 2 weeks.


Subject(s)
Adenylyl Cyclases/metabolism , Cyclic AMP-Dependent Protein Kinases/classification , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP/metabolism , Gene Expression Regulation, Enzymologic/drug effects , Hormones/pharmacology , Mesenchymal Stem Cells/metabolism , Adenylyl Cyclases/genetics , Cells, Cultured , Cyclic AMP-Dependent Protein Kinases/genetics , Humans , Mesenchymal Stem Cells/drug effects , Signal Transduction
7.
Biochimie ; 174: 9-17, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32275944

ABSTRACT

Rheumatoid arthritis (RA) is frequent systemic autoimmune disease characterized by excessive activation of collagen-specific T helper cells, and elevated level of autoantibodies in the serum. Development of RA is associated with defect in compartment of regulatory CD4+Foxp3+ T cells (Treg), but data concerning suppressive potential of Treg population in RA patients are contradictory and depend on the stage of disease. In this study we aimed to characterize abundance and phenotypic markers of CD4+Foxp3+ Treg in peripheral blood of healthy donors compared to untreated early RA patients to find potential correlations with the disease activity, antibody level, and absolute numbers and proportion of different subpopulations of T cells. Moreover, we assessed the influence of methotrexate (MT) treatment on percentage and absolute numbers of CD4+Foxp3+ Treg from the peripheral blood of untreated early RA patients. We demonstrate that increase and phenotypic changes in Treg population correlate well with response to MT. Analysis of the cohorts of matched RA patients (n = 45) and healthy controls (n = 20) revealed that patients with untreated early RA demonstrate substantial decrease in blood Treg percentage and absolute number, as well as low level of activated Treg surface markers in comparison to healthy control. The defect in Treg compartment negatively correlates with both RA activity and antibody level. MT treatment of patients with early untreated RA increases both proportion and absolute number of Treg with high level of activation markers, suggesting an increase of their functional capacity. Here we speculate the role of Tregs as specific cellular marker of successful RA treatment.


Subject(s)
Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Methotrexate/therapeutic use , T-Lymphocytes, Regulatory/drug effects , Adult , Biomarkers/blood , Case-Control Studies , Female , Forkhead Transcription Factors/metabolism , Humans , Male , Middle Aged , T-Lymphocytes, Regulatory/pathology
8.
Tissue Eng Part C Methods ; 25(3): 168-175, 2019 03.
Article in English | MEDLINE | ID: mdl-30747044

ABSTRACT

IMPACT STATEMENT: Cell lines represent convenient models to elucidate specific causes of multigenetic and pluricausal diseases, to test breakthrough regenerative technologies. Most commonly used cell lines surpass diploid cells in their accessibility for delivery of large DNA molecules and genome editing, but the main obstacles for obtaining cell models with knockout-targeted protein from aneuploid cells are multiple allele copies and karyotype/phenotype heterogeneity. In the study, we report an original approach to CRISPR-/Cas9-mediated genome modification of aneuploid cell cultures to create functional cell models, achieving highly efficient targeted protein knockout and avoiding "clonal effect" (for the first time to our knowledge).


Subject(s)
Aneuploidy , CRISPR-Cas Systems , Gene Editing , Gene Knockout Techniques/standards , Genes/genetics , Animals , HeLa Cells , Hep G2 Cells , Humans , Mice , NIH 3T3 Cells
9.
Int J Mol Sci ; 19(12)2018 Nov 22.
Article in English | MEDLINE | ID: mdl-30469522

ABSTRACT

Primary adipose tissue-derived multipotent stem/stromal cells (adMSCs) demonstrate unusual signaling regulatory mechanisms, i.e., increased of sensitivity to catecholamines in response to noradrenaline. This phenomenon is called "heterologous sensitization", and was previously found only in embryonic cells. Since further elucidation of the molecular mechanisms that are responsible for such sensitization in primary adMSCs was difficult due to the high heterogeneity in adrenergic receptor expression, we employed immortalized adipose-derived mesenchymal stem cell lines (hTERT-MSCs). Using flow cytometry and immunofluorescence microscopy, we demonstrated that the proportion of cells expressing adrenergic receptor isoforms does not differ significantly in hTERT-MSCs cells compared to the primary adMSCs culture. However, using analysis of Ca2+-mobilization in single cells, we found that these cells did not demonstrate the sensitization seen in primary adMSCs. Consistently, these cells did not activate cAMP synthesis in response to noradrenaline. These data indicate that immortalized adipose-derived mesenchymal stem cell lines demonstrated impaired ability to respond to noradrenaline compared to primary adMSCs. These data draw attention to the usage of immortalized cells for MSCs-based regenerative medicine, especially in the field of pharmacology.


Subject(s)
Adrenergic alpha-Agonists/pharmacology , Mesenchymal Stem Cells/drug effects , Norepinephrine/pharmacology , Adipose Tissue/cytology , Calcium Signaling , Cell Line , Cells, Cultured , Cyclic AMP/metabolism , Humans , Mesenchymal Stem Cells/metabolism
10.
Sci Data ; 5: 180196, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30277480

ABSTRACT

Mesenchymal stem/stromal cells (MSCs) were identified in most tissues of an adult organism. MSCs mediate physiological renewal, as well as regulation of tissue homeostasis, reparation and regeneration. Functions of MSCs are regulated by endocrine and neuronal signals, and noradrenaline is one of the most important MSC regulators. We provided flow cytometry analysis of expression of adrenergic receptors on the surface of human MSCs isolated from ten different donors. We have found that the expression profile of adrenergic receptors in MSCs vary significantly between donors. We also showed that alpha1A-adrenoceptor expression is upregulated under the action of noradrenaline. We share our flow cytometry raw data, as well as processing of these data on a flow cytometry repository for freely downloading.


Subject(s)
Mesenchymal Stem Cells/metabolism , Receptors, Adrenergic/biosynthesis , Adult , Flow Cytometry , Humans , Middle Aged
11.
Oncotarget ; 9(50): 29414-29430, 2018 Jun 29.
Article in English | MEDLINE | ID: mdl-30034627

ABSTRACT

Neuroblastoma is a tumor arising from pluripotent sympathoadrenal precursor cells of neural cell origin. Neuroblastoma is one of the most aggressive childhood tumors with highly invasive and metastatic potential. The increased expression of urokinase and its receptor is often associated with a negative prognosis in neuroblastoma patients. We have shown that targeting of the Plaur gene in mouse neuroblastoma Neuro 2A cells by CRISPR/Cas9n results in ~60% decrease in cell proliferation (p<0.05), reduction in the number of Ki-67 positive cells, caspase 3 activation and PARP-1 cleavage. Knockout of uPAR leads to downregulation of mRNA encoding full-length TrkC receptor, which is involved in p38MAPK and Akt signalling pathways. This finding provides a rationale to study a role of uPAR in neuroblastoma progression, since uPAR could be considered a potential therapeutic target in neuroblastoma treatment.

12.
Biol Chem ; 399(5): 437-446, 2018 04 25.
Article in English | MEDLINE | ID: mdl-29373314

ABSTRACT

Duox2 belongs to the large family of NADPH-oxidase enzymes that are implicated in immune response, vasoregulation, hormone synthesis, cell growth and differentiation via the regulated synthesis of H2O2 and reactive oxygen species. We and others have shown that Duox2 and H2O2 are involved in platelet-derived growth factor (PDGF) induced migration of fibroblasts. Now, using the CRISPR/Cas9-mediated genome editing we demonstrate that the extreme C-terminal region of Duox2 is required for PDGF-stimulated activity of Duox2 and H2O2 production. We generated the fibroblast cells that stably co-express the wild-type or C-terminally modified Duox2 and fluorescent H2O2 probe Hyper. We found that nonsense substitution of the last 23 amino acids in Duox2 results in complete loss of PDGF stimulation of intracellular H2O2 and fibroblast migration, yet these mutations have no effects on the expression of Duox2 and other NADPH-oxidases in cells. These findings illustrate for the first time that the extreme C-terminus of Duox2 is required for the functional activity of the enzyme. Furthermore, the conservative nature of the C-terminus suggests its role for activity in other NADPH-oxidases.


Subject(s)
CRISPR-Cas Systems/genetics , Dual Oxidases/metabolism , Platelet-Derived Growth Factor/metabolism , Animals , Cell Movement , Cells, Cultured , Dual Oxidases/genetics , Fibroblasts/metabolism , Mice , Mutation , NIH 3T3 Cells
13.
Data Brief ; 16: 327-333, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29234689

ABSTRACT

This article contains results of analyses of angiotensin II receptors expression in human adipose tissue and stem/stromal cells isolated from adipose tissue. We also provide here data regarding the effect of angiotensin II on intracellular calcium mobilization in adipose tissue derived stem/stromal cells (ADSCs). Discussion of the data can be found in (Sysoeva et al., 2017) [1].

14.
Stem Cell Res ; 25: 115-122, 2017 12.
Article in English | MEDLINE | ID: mdl-29127873

ABSTRACT

Obesity is often associated with high systemic and local activity of renin-angiotensin system (RAS). Mesenchymal stem cells of adipose tissue are the main source of adipocytes. The aim of this study was to clarify how local RAS could control adipose differentiation of human adipose tissue derived mesenchymal stem cells (ADSCs). We examined the distribution of angiotensin receptor expressing cells in human adipose tissue and found that type 1 and type 2 receptors are co-expressed in its stromal compartment, which is known to contain mesenchymal stem cells. To study the expression of receptors specifically in ADSCs we have isolated them from adipose tissue. Up to 99% of cultured ADSCs expressed angiotensin II (AngII) receptor type 1 (AT1). Using the analysis of Ca2+ mobilization in single cells we found that only 5.2±2.7% of ADSCs specifically respond to serial Ang II applications via AT1 receptor and expressed this receptor constantly. This AT1const ADSCs subpopulation exhibited increased adipose competency, which was triggered by endogenous AngII. Inhibitory and expression analyses showed that AT1const ADSCs highly co-express AngII type 2 receptor (AT2), which was responsible for increased adipose competency of this ADSC subpopulation.


Subject(s)
Angiotensin II/metabolism , Mesenchymal Stem Cells/cytology , Receptor, Angiotensin, Type 2/metabolism , Adipogenesis/genetics , Adipogenesis/physiology , Adipose Tissue/cytology , Cell Differentiation/physiology , Humans , Receptor, Angiotensin, Type 2/genetics
15.
Sci Rep ; 6: 32835, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27596381

ABSTRACT

Sympathetic neurons are important components of mesenchymal stem cells (MSCs) niche and noradrenaline regulates biological activities of these cells. Here we examined the mechanisms of regulation of MSCs responsiveness to noradrenaline. Using flow cytometry, we demonstrated that α1A adrenergic receptors isoform was the most abundant in adipose tissue-derived MSCs. Using calcium imaging in single cells, we demonstrated that only 6.9 ± 0.8% of MSCs responded to noradrenaline by intracellular calcium release. Noradrenaline increases MSCs sensitivity to catecholamines in a transitory mode. Within 6 hrs after incubation with noradrenaline the proportion of cells responding by Ca(2+) release to the fresh noradrenaline addition has doubled but declined to the baseline after 24 hrs. Increased sensitivity was due to the elevated quantities of α1A-adrenergic receptors on MSCs. Such elevation depended on the stimulation of ß-adrenergic receptors and adenylate cyclase activation. The data for the first time clarify mechanisms of regulation of MSCs sensitivity to noradrenaline.


Subject(s)
Adenylyl Cyclases/metabolism , Adipose Tissue/metabolism , Calcium/metabolism , Mesenchymal Stem Cells/metabolism , Norepinephrine/pharmacology , Receptors, Adrenergic, alpha-1/metabolism , Receptors, Adrenergic, beta/metabolism , Adenylyl Cyclases/genetics , Adipose Tissue/cytology , Adrenergic alpha-Agonists/pharmacology , Cells, Cultured , Humans , Mesenchymal Stem Cells/cytology , Middle Aged , Receptors, Adrenergic, alpha-1/genetics , Receptors, Adrenergic, beta/genetics , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...