Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
PLoS Comput Biol ; 19(1): e1010870, 2023 01.
Article in English | MEDLINE | ID: mdl-36689464

ABSTRACT

The control of protein synthesis and the overall levels of various proteins in the cell is critical for achieving homoeostasis. Regulation of protein levels can occur at the transcriptional level, where the total number of messenger RNAs in the overall transcriptome are controlled, or at the translational level, where interactions of proteins and ribosomes with the messenger RNA determine protein translational efficiency. Although transcriptional control of mRNA levels is the most commonly used regulatory control mechanism in cells, positive-sense single-stranded RNA viruses often utilise translational control mechanisms to regulate their proteins in the host cell. Here I detail a computational method for stochastically simulating protein synthesis on a dynamic messenger RNA using the Gillespie algorithm, where the mRNA is allowed to co-translationally fold in response to ribosome movement. Applying the model to the test case of the bacteriophage MS2 virus, I show that the models ability to accurately reproduce experimental measurements of coat protein production and translational repression of the viral RNA dependant RNA polymerase at high coat protein concentrations. The computational techniques reported here open up the potential to examine the infection dynamics of a ssRNA virus in a host cell at the level of the genomic RNA, as well as examine general translation control mechanisms present in polycistronic mRNAs.


Subject(s)
Protein Biosynthesis , Ribosomes , RNA, Messenger/genetics , RNA, Messenger/metabolism , Kinetics , Ribosomes/genetics , Ribosomes/metabolism , Gene Expression Regulation , Proteins/metabolism
2.
J Mol Biol ; 434(20): 167797, 2022 10 30.
Article in English | MEDLINE | ID: mdl-35998704

ABSTRACT

Many single-stranded, positive-sense RNA viruses regulate assembly of their infectious virions by forming multiple, cognate coat protein (CP)-genome contacts at sites termed Packaging Signals (PSs). We have determined the secondary structures of the bacteriophage MS2 ssRNA genome (gRNA) frozen in defined states using constraints from X-ray synchrotron footprinting (XRF). Comparison of the footprints from phage and transcript confirms the presence of multiple PSs in contact with CP dimers in the former. This is also true for a virus-like particle (VLP) assembled around the gRNA in vitro in the absence of the single-copy Maturation Protein (MP) found in phage. Since PS folds are present at many sites across gRNA transcripts, it appears that this genome has evolved to facilitate this mechanism of assembly regulation. There are striking differences between the gRNA-CP contacts seen in phage and the VLP, suggesting that the latter are inappropriate surrogates for aspects of phage structure/function. Roughly 50% of potential PS sites in the gRNA are not in contact with the protein shell of phage. However, many of these sit adjacent to, albeit not in contact with, PS-binding sites on CP dimers. We hypothesize that these act as PSs transiently during assembly but subsequently dissociate. Combining the XRF data with PS locations from an asymmetric cryo-EM reconstruction suggests that the genome positions of such dissociations are non-random and may facilitate infection. The loss of many PS-CP interactions towards the 3' end of the gRNA would allow this part of the genome to transit more easily through the narrow basal body of the pilus extruding machinery. This is the known first step in phage infection. In addition, each PS-CP dissociation event leaves the protein partner trapped in a non-lowest free-energy conformation. This destabilizes the protein shell which must disassemble during infection, further facilitating this stage of the life-cycle.


Subject(s)
Capsid Proteins , Levivirus , Virus Assembly , Capsid Proteins/chemistry , Genome, Viral/genetics , Levivirus/chemistry , Levivirus/pathogenicity , Levivirus/physiology , RNA, Viral/genetics , Virus Assembly/genetics
3.
PLoS Comput Biol ; 17(8): e1009306, 2021 08.
Article in English | MEDLINE | ID: mdl-34428224

ABSTRACT

The vast majority of viruses consist of a nucleic acid surrounded by a protective icosahedral protein shell called the capsid. During viral infection of a host cell, the timing and efficiency of the assembly process is important for ensuring the production of infectious new progeny virus particles. In the class of single-stranded RNA (ssRNA) viruses, the assembly of the capsid takes place in tandem with packaging of the ssRNA genome in a highly cooperative co-assembly process. In simple ssRNA viruses such as the bacteriophage MS2 and small RNA plant viruses such as STNV, this cooperative process results from multiple interactions between the protein shell and sites in the RNA genome which have been termed packaging signals. Using a stochastic assembly algorithm which includes cooperative interactions between the protein shell and packaging signals in the RNA genome, we demonstrate that highly efficient assembly of STNV capsids arises from a set of simple local rules. Altering the local assembly rules results in different nucleation scenarios with varying assembly efficiencies, which in some cases depend strongly on interactions with RNA packaging signals. Our results provide a potential simple explanation based on local assembly rules for the ability of some ssRNA viruses to spontaneously assemble around charged polymers and other non-viral RNAs in vitro.


Subject(s)
Plant Viruses/physiology , RNA, Viral/genetics , Satellite Viruses/genetics , Virus Assembly , Capsid Proteins/metabolism , Genes, Viral , Nucleic Acid Conformation , Plant Viruses/genetics , RNA, Viral/chemistry , Stochastic Processes
4.
Viruses ; 13(1)2020 12 23.
Article in English | MEDLINE | ID: mdl-33374798

ABSTRACT

Hepatitis B virus (HBV) is a major focus of antiviral research worldwide. The International Coalition to Eliminate HBV, together with the World Health Organisation (WHO), have prioritised the search for a cure, with the goal of eliminating deaths from viral hepatitis by 2030. We present here a comprehensive model of intracellular HBV infection dynamics that includes all molecular processes currently targeted by drugs and agrees well with the observed outcomes of several clinical studies. The model reveals previously unsuspected kinetic behaviour in the formation of sub-viral particles, which could lead to a better understanding of the immune responses to infection. It also enables rapid comparative assessment of the impact of different treatment options and their potential synergies as combination therapies. A comparison of available and currently developed treatment options reveals that combinations of multiple capsid assembly inhibitors perform best.


Subject(s)
Hepatitis B virus/physiology , Hepatitis B/virology , Algorithms , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Computer Simulation , Hepatitis B/drug therapy , Hepatitis B virus/drug effects , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/virology , Humans , Kinetics , Models, Biological , Virus Assembly/drug effects , Virus Internalization/drug effects , Virus Replication/drug effects
5.
PLoS Pathog ; 16(12): e1009146, 2020 12.
Article in English | MEDLINE | ID: mdl-33370422

ABSTRACT

Picornaviruses are important viral pathogens, but despite extensive study, the assembly process of their infectious virions is still incompletely understood, preventing the development of anti-viral strategies targeting this essential part of the life cycle. We report the identification, via RNA SELEX and bioinformatics, of multiple RNA sites across the genome of a typical enterovirus, enterovirus-E (EV-E), that each have affinity for the cognate viral capsid protein (CP) capsomer. Many of these sites are evolutionarily conserved across known EV-E variants, suggesting they play essential functional roles. Cryo-electron microscopy was used to reconstruct the EV-E particle at ~2.2 Å resolution, revealing extensive density for the genomic RNA. Relaxing the imposed symmetry within the reconstructed particles reveals multiple RNA-CP contacts, a first for any picornavirus. Conservative mutagenesis of the individual RNA-contacting amino acid side chains in EV-E, many of which are conserved across the enterovirus family including poliovirus, is lethal but does not interfere with replication or translation. Anti-EV-E and anti-poliovirus aptamers share sequence similarities with sites distributed across the poliovirus genome. These data are consistent with the hypothesis that these RNA-CP contacts are RNA Packaging Signals (PSs) that play vital roles in assembly and suggest that the RNA PSs are evolutionarily conserved between pathogens within the family, augmenting the current protein-only assembly paradigm for this family of viruses.


Subject(s)
Capsid Proteins/metabolism , Enterovirus/physiology , RNA, Viral/genetics , Virus Assembly/physiology , Amino Acid Sequence , Capsid Proteins/ultrastructure , Cryoelectron Microscopy , Enterovirus/ultrastructure , RNA, Viral/ultrastructure
6.
Proc Natl Acad Sci U S A ; 116(9): 3556-3561, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30737287

ABSTRACT

Double-stranded DNA viruses, including bacteriophages and herpesviruses, package their genomes into preformed capsids, using ATP-driven motors. Seeking to advance structural and mechanistic understanding, we established in vitro packaging for a thermostable bacteriophage, P23-45 of Thermus thermophilus Both the unexpanded procapsid and the expanded mature capsid can package DNA in the presence of packaging ATPase over the 20 °C to 70 °C temperature range, with optimum activity at 50 °C to 65 °C. Cryo-EM reconstructions for the mature and immature capsids at 3.7-Å and 4.4-Å resolution, respectively, reveal conformational changes during capsid expansion. Capsomer interactions in the expanded capsid are reinforced by formation of intersubunit ß-sheets with N-terminal segments of auxiliary protein trimers. Unexpectedly, the capsid has T=7 quasi-symmetry, despite the P23-45 genome being twice as large as those of known T=7 phages, in which the DNA is compacted to near-crystalline density. Our data explain this anomaly, showing how the canonical HK97 fold has adapted to double the volume of the capsid, while maintaining its structural integrity. Reconstructions of the procapsid and the expanded capsid defined the structure of the single vertex containing the portal protein. Together with a 1.95-Å resolution crystal structure of the portal protein and DNA packaging assays, these reconstructions indicate that capsid expansion affects the conformation of the portal protein, while still allowing DNA to be packaged. These observations suggest a mechanism by which structural events inside the capsid can be communicated to the outside.


Subject(s)
Bacteriophages/ultrastructure , Capsid/ultrastructure , DNA Packaging/genetics , DNA Viruses/ultrastructure , Bacteriophages/genetics , Cryoelectron Microscopy , DNA Viruses/genetics , DNA, Viral/genetics , DNA, Viral/ultrastructure , Virion/genetics , Virion/ultrastructure , Virus Assembly/genetics
7.
Curr Opin Virol ; 31: 74-81, 2018 08.
Article in English | MEDLINE | ID: mdl-30078702

ABSTRACT

Virus assembly, a key stage in any viral life cycle, had long been considered to be primarily driven by protein-protein interactions and nonspecific interactions between genomic RNA and capsid protein. We review here a modelling paradigm for RNA virus assembly that illustrates the crucial roles of multiple dispersed, specific interactions between viral genomes and coat proteins in capsid assembly. The model reveals how multiple sequence-structure motifs in the genomic RNA, termed packaging signals, with a shared coat protein recognition motif enable viruses to overcome a viral assembly-equivalent of Levinthal's Paradox in protein folding. The fitness advantages conferred by this mechanism suggest that it should be widespread in viruses, opening up new perspectives on viral evolution and anti-viral therapy.


Subject(s)
Capsid Proteins/chemistry , Genome, Viral , RNA Viruses/genetics , RNA Viruses/physiology , Virus Assembly , Binding Sites , Evolution, Molecular , Models, Molecular , Nucleic Acid Conformation , Protein Binding , RNA, Viral/genetics
8.
Viruses ; 9(11)2017 11 17.
Article in English | MEDLINE | ID: mdl-29149077

ABSTRACT

The rapid occurrence of therapy-resistant mutant strains provides a challenge for anti-viral therapy. An ideal drug target would be a highly conserved molecular feature in the viral life cycle, such as the packaging signals in the genomes of RNA viruses that encode an instruction manual for their efficient assembly. The ubiquity of this assembly code in RNA viruses, including major human pathogens, suggests that it confers selective advantages. However, their impact on viral evolution cannot be assessed in current models of viral infection that lack molecular details of virus assembly. We introduce here a quasispecies-based model of a viral infection that incorporates structural and mechanistic knowledge of packaging signal function in assembly to construct a phenotype-fitness map, capturing the impact of this RNA code on assembly yield and efficiency. Details of viral replication and assembly inside an infected host cell are coupled with a population model of a viral infection, allowing the occurrence of therapy resistance to be assessed in response to drugs inhibiting packaging signal recognition. Stochastic simulations of viral quasispecies evolution in chronic HCV infection under drug action and/or immune clearance reveal that drugs targeting all RNA signals in the assembly code collectively have a high barrier to drug resistance, even though each packaging signal in isolation has a lower barrier than conventional drugs. This suggests that drugs targeting the RNA signals in the assembly code could be promising routes for exploitation in anti-viral drug design.


Subject(s)
Evolution, Molecular , Quasispecies/genetics , RNA Viruses/genetics , Virus Assembly/drug effects , Virus Replication/drug effects , Antiviral Agents/pharmacology , Computer Simulation , Drug Delivery Systems , Drug Design , Drug Resistance, Multiple, Viral/genetics , Humans , Quasispecies/drug effects , RNA Viruses/drug effects , RNA Viruses/pathogenicity , RNA, Viral/genetics , Virus Diseases/virology
9.
Elife ; 62017 09 18.
Article in English | MEDLINE | ID: mdl-28922109

ABSTRACT

Segmented RNA viruses are ubiquitous pathogens, which include influenza viruses and rotaviruses. A major challenge in understanding their assembly is the combinatorial problem of a non-random selection of a full genomic set of distinct RNAs. This process involves complex RNA-RNA and protein-RNA interactions, which are often obscured by non-specific binding at concentrations approaching in vivo assembly conditions. Here, we present direct experimental evidence of sequence-specific inter-segment interactions between rotavirus RNAs, taking place in a complex RNA- and protein-rich milieu. We show that binding of the rotavirus-encoded non-structural protein NSP2 to viral ssRNAs results in the remodeling of RNA, which is conducive to formation of stable inter-segment contacts. To identify the sites of these interactions, we have developed an RNA-RNA SELEX approach for mapping the sequences involved in inter-segment base-pairing. Our findings elucidate the molecular basis underlying inter-segment interactions in rotaviruses, paving the way for delineating similar RNA-RNA interactions that govern assembly of other segmented RNA viruses.


Subject(s)
Genome, Viral , RNA Folding , RNA, Viral/metabolism , RNA-Binding Proteins/metabolism , Rotavirus/genetics , Viral Nonstructural Proteins/metabolism , Nucleic Acid Conformation , Protein Binding , RNA, Viral/genetics , Rotavirus/physiology
10.
Nat Commun ; 8(1): 83, 2017 07 14.
Article in English | MEDLINE | ID: mdl-28710463

ABSTRACT

A correction has been published and is appended to both the HTML and PDF versions of this paper. The error has not been fixed in the paper.

11.
Nat Commun ; 8(1): 5, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28232749

ABSTRACT

Assembly of the major viral pathogens of the Picornaviridae family is poorly understood. Human parechovirus 1 is an example of such viruses that contains 60 short regions of ordered RNA density making identical contacts with the protein shell. We show here via a combination of RNA-based systematic evolution of ligands by exponential enrichment, bioinformatics analysis and reverse genetics that these RNA segments are bound to the coat proteins in a sequence-specific manner. Disruption of either the RNA coat protein recognition motif or its contact amino acid residues is deleterious for viral assembly. The data are consistent with RNA packaging signals playing essential roles in virion assembly. Their binding sites on the coat proteins are evolutionarily conserved across the Parechovirus genus, suggesting that they represent potential broad-spectrum anti-viral targets.The mechanism underlying packaging of genomic RNA into viral particles is not well understood for human parechoviruses. Here the authors identify short RNA motifs in the parechovirus genome that bind capsid proteins, providing approximately 60 specific interactions for virion assembly.


Subject(s)
Capsid Proteins/genetics , Genome, Viral , Parechovirus/genetics , RNA, Viral/genetics , Virion/genetics , Virus Assembly , Amino Acid Motifs , Base Pairing , Binding Sites , Capsid Proteins/metabolism , Capsid Proteins/ultrastructure , Computational Biology , Conserved Sequence , Gene Expression , Humans , Models, Molecular , Parechovirus/metabolism , Parechovirus/ultrastructure , Protein Binding , RNA Folding , RNA, Viral/metabolism , RNA, Viral/ultrastructure , Reverse Genetics , SELEX Aptamer Technique , Virion/metabolism , Virion/ultrastructure
12.
Nucleic Acids Res ; 43(12): 5708-15, 2015 Jul 13.
Article in English | MEDLINE | ID: mdl-25990741

ABSTRACT

In this paper I outline a fast method called KFOLD for implementing the Gillepie algorithm to stochastically sample the folding kinetics of an RNA molecule at single base-pair resolution. In the same fashion as the KINFOLD algorithm, which also uses the Gillespie algorithm to predict folding kinetics, KFOLD stochastically chooses a new RNA secondary structure state that is accessible from the current state by a single base-pair addition/deletion following the Gillespie procedure. However, unlike KINFOLD, the KFOLD algorithm utilizes the fact that many of the base-pair addition/deletion reactions and their corresponding rates do not change between each step in the algorithm. This allows KFOLD to achieve a substantial speed-up in the time required to compute a prediction of the folding pathway and, for a fixed number of base-pair moves, performs logarithmically with sequence size. This increase in speed opens up the possibility of studying the kinetics of much longer RNA sequences at single base-pair resolution while also allowing for the RNA folding statistics of smaller RNA sequences to be computed much more quickly.


Subject(s)
Algorithms , RNA Folding , Base Sequence , Computational Biology/methods , Kinetics , RNA/chemistry , RNA, Protozoan/chemistry , Trypanosomatina/genetics
13.
PLoS Comput Biol ; 11(3): e1004146, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25793998

ABSTRACT

Cryo-electron microscopy permits 3-D structures of viral pathogens to be determined in remarkable detail. In particular, the protein containers encapsulating viral genomes have been determined to high resolution using symmetry averaging techniques that exploit the icosahedral architecture seen in many viruses. By contrast, structure determination of asymmetric components remains a challenge, and novel analysis methods are required to reveal such features and characterize their functional roles during infection. Motivated by the important, cooperative roles of viral genomes in the assembly of single-stranded RNA viruses, we have developed a new analysis method that reveals the asymmetric structural organization of viral genomes in proximity to the capsid in such viruses. The method uses geometric constraints on genome organization, formulated based on knowledge of icosahedrally-averaged reconstructions and the roles of the RNA-capsid protein contacts, to analyse cryo-electron tomographic data. We apply this method to the low-resolution tomographic data of a model virus and infer the unique asymmetric organization of its genome in contact with the protein shell of the capsid. This opens unprecedented opportunities to analyse viral genomes, revealing conserved structural features and mechanisms that can be targeted in antiviral drug design.


Subject(s)
Genome, Viral/genetics , RNA Viruses/genetics , RNA Viruses/ultrastructure , Computational Biology , Cryoelectron Microscopy , Levivirus , Models, Molecular , Tomography
14.
Proc Natl Acad Sci U S A ; 112(7): 2227-32, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25646435

ABSTRACT

We present direct experimental evidence that assembly of a single-stranded RNA virus occurs via a packaging signal-mediated mechanism. We show that the sequences of coat protein recognition motifs within multiple, dispersed, putative RNA packaging signals, as well as their relative spacing within a genomic fragment, act collectively to influence the fidelity and yield of capsid self-assembly in vitro. These experiments confirm that the selective advantages for viral yield and encapsidation specificity, predicted from previous modeling of packaging signal-mediated assembly, are found in Nature. Regions of the genome that act as packaging signals also function in translational and transcriptional enhancement, as well as directly coding for the coat protein, highlighting the density of encoded functions within the viral RNA. Assembly and gene expression are therefore direct molecular competitors for different functional folds of the same RNA sequence. The strongest packaging signal in the test fragment, encodes a region of the coat protein that undergoes a conformational change upon contact with packaging signals. A similar phenomenon occurs in other RNA viruses for which packaging signals are known. These contacts hint at an even deeper density of encoded functions in viral RNA, which if confirmed, would have profound consequences for the evolution of this class of pathogens.


Subject(s)
RNA Viruses/genetics , RNA, Viral/genetics , Capsid Proteins/metabolism , RNA Viruses/metabolism , RNA, Viral/chemistry , RNA, Viral/metabolism , Static Electricity
15.
Acta Crystallogr A Found Adv ; 70(Pt 5): 417-28, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25176990

ABSTRACT

The subgroup structure of the hyperoctahedral group in six dimensions is investigated. In particular, the subgroups isomorphic to the icosahedral group are studied. The orthogonal crystallographic representations of the icosahedral group are classified and their intersections and subgroups analysed, using results from graph theory and their spectra.


Subject(s)
Crystallography/methods , Algorithms , Models, Chemical
16.
Proc Natl Acad Sci U S A ; 111(14): 5361-6, 2014 Apr 08.
Article in English | MEDLINE | ID: mdl-24706827

ABSTRACT

One of the important puzzles in virology is how viruses assemble the protein containers that package their genomes rapidly and efficiently in vivo while avoiding triggering their hosts' antiviral defenses. Viral assembly appears directed toward a relatively small subset of the vast number of all possible assembly intermediates and pathways, akin to Levinthal's paradox for the folding of polypeptide chains. Using an in silico assembly model, we demonstrate that this reduction in complexity can be understood if aspects of in vivo assembly, which have mostly been neglected in in vitro experimental and theoretical modeling assembly studies, are included in the analysis. In particular, we show that the increasing viral coat protein concentration that occurs in infected cells plays unexpected and vital roles in avoiding potential kinetic assembly traps, significantly reducing the number of assembly pathways and assembly initiation sites, and resulting in enhanced assembly efficiency and genome packaging specificity. Because capsid assembly is a vital determinant of the overall fitness of a virus in the infection process, these insights have important consequences for our understanding of how selection impacts on the evolution of viral quasispecies. These results moreover suggest strategies for optimizing the production of protein nanocontainers for drug delivery and of virus-like particles for vaccination. We demonstrate here in silico that drugs targeting the specific RNA-capsid protein contacts can delay assembly, reduce viral load, and lead to an increase of misencapsidation of cellular RNAs, hence opening up unique avenues for antiviral therapy.


Subject(s)
Antiviral Agents/pharmacology , Models, Biological , Virus Assembly , RNA, Viral/metabolism , Viral Proteins/metabolism
17.
J Mol Biol ; 425(17): 3235-49, 2013 Sep 09.
Article in English | MEDLINE | ID: mdl-23763992

ABSTRACT

The current paradigm for assembly of single-stranded RNA viruses is based on a mechanism involving non-sequence-specific packaging of genomic RNA driven by electrostatic interactions. Recent experiments, however, provide compelling evidence for sequence specificity in this process both in vitro and in vivo. The existence of multiple RNA packaging signals (PSs) within viral genomes has been proposed, which facilitates assembly by binding coat proteins in such a way that they promote the protein-protein contacts needed to build the capsid. The binding energy from these interactions enables the confinement or compaction of the genomic RNAs. Identifying the nature of such PSs is crucial for a full understanding of assembly, which is an as yet untapped potential drug target for this important class of pathogens. Here, for two related bacterial viruses, we determine the sequences and locations of their PSs using Hamiltonian paths, a concept from graph theory, in combination with bioinformatics and structural studies. Their PSs have a common secondary structure motif but distinct consensus sequences and positions within the respective genomes. Despite these differences, the distributions of PSs in both viruses imply defined conformations for the packaged RNA genomes in contact with the protein shell in the capsid, consistent with a recent asymmetric structure determination of the MS2 virion. The PS distributions identified moreover imply a preferred, evolutionarily conserved assembly pathway with respect to the RNA sequence with potentially profound implications for other single-stranded RNA viruses known to have RNA PSs, including many animal and human pathogens.


Subject(s)
Capsid/metabolism , Genome, Viral , RNA Viruses/physiology , RNA, Viral/genetics , RNA, Viral/metabolism , Virus Assembly/genetics , Bacteriophages/genetics , Bacteriophages/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , Nucleic Acid Conformation , RNA/genetics , RNA Viruses/genetics , RNA Viruses/metabolism
18.
Article in English | MEDLINE | ID: mdl-23496558

ABSTRACT

Virus capsid assembly has traditionally been considered as a process that can be described primarily via self-assembly of the capsid proteins, neglecting interactions with other viral or cellular components. Our recent work on several ssRNA viruses, a major class of viral pathogens containing important human, animal, and plant viruses, has shown that this protein-centric view is too simplistic. Capsid assembly for these viruses relies strongly on a number of cooperative roles played by the genomic RNA. This realization requires a new theoretical framework for the modeling and prediction of the assembly behavior of these viruses. In a seminal paper Zlotnick [J. Mol. Biol. 241, 59 (1994)] laid the foundations for the modeling of capsid assembly as a protein-only self-assembly process, illustrating his approach using the example of a dodecahedral study system. We describe here a generalized framework for modeling assembly that incorporates the regulatory functions provided by cognate protein-nucleic-acid interactions between capsid proteins and segments of the genomic RNA, called packaging signals, into the model. Using the same dodecahedron system we demonstrate, using a Gillespie-type algorithm to deal with the enhanced complexity of the problem instead of a master equation approach, that assembly kinetics and yield strongly depend on the distribution and nature of the packaging signals, highlighting the importance of the crucial roles of the RNA in this process.


Subject(s)
Capsid/physiology , Genome/genetics , Models, Biological , RNA, Viral/genetics , Virus Assembly/physiology , Computer Simulation
19.
J Mol Biol ; 413(1): 51-65, 2011 Oct 14.
Article in English | MEDLINE | ID: mdl-21839093

ABSTRACT

Using a recombinant, T=1 Satellite Tobacco Necrosis Virus (STNV)-like particle expressed in Escherichia coli, we have established conditions for in vitro disassembly and reassembly of the viral capsid. In vivo assembly is dependent on the presence of the coat protein (CP) N-terminal region, and in vitro assembly requires RNA. Using immobilised CP monomers under reassembly conditions with "free" CP subunits, we have prepared a range of partially assembled CP species for RNA aptamer selection. SELEX directed against the RNA-binding face of the STNV CP resulted in the isolation of several clones, one of which (B3) matches the STNV-1 genome in 16 out of 25 nucleotide positions, including across a statistically significant 10/10 stretch. This 10-base region folds into a stem-loop displaying the motif ACAA and has been shown to bind to STNV CP. Analysis of the other aptamer sequences reveals that the majority can be folded into stem-loops displaying versions of this motif. Using a sequence and secondary structure search motif to analyse the genomic sequence of STNV-1, we identified 30 stem-loops displaying the sequence motif AxxA. The implication is that there are many stem-loops in the genome carrying essential recognition features for binding STNV CP. Secondary structure predictions of the genomic RNA using Mfold showed that only 8 out of 30 of these stem-loops would be formed in the lowest-energy structure. These results are consistent with an assembly mechanism based on kinetically driven folding of the RNA.


Subject(s)
Capsid Proteins/metabolism , Capsid/metabolism , Protein Multimerization , RNA, Viral/metabolism , Tobacco necrosis satellite virus/physiology , Virus Assembly , Amino Acid Sequence , Capsid Proteins/genetics , Escherichia coli/genetics , Models, Molecular , Molecular Sequence Data , Nucleic Acid Conformation , Protein Binding , Protein Conformation , RNA, Viral/genetics , SELEX Aptamer Technique , Sequence Alignment
20.
J Mol Biol ; 401(2): 298-308, 2010 Aug 13.
Article in English | MEDLINE | ID: mdl-20621589

ABSTRACT

Many single-stranded RNA viruses self-assemble their protein containers around their genomes. The roles that the RNA plays in this assembly process have mostly been ignored, resulting in a protein-centric view of assembly that is unable to explain adequately the fidelity and speed of assembly in such viruses. Using bacteriophage MS2, we demonstrate here via a combination of mass spectrometry and kinetic modelling how viral RNA can bias assembly towards only a small number of the many possible assembly pathways, thus increasing assembly efficiency. Assembly reactions have been studied in vitro using phage coat protein dimers, the known building block of the T=3 shell, and short RNA stem-loops based on the translational operator of the replicase cistron, a 19 nt fragment (TR). Mass spectrometry has unambiguously identified two on-pathway intermediates in such reactions that have stoichiometry consistent with formation of either a particle 3-fold or 5-fold axis. These imply that there are at least two sub-pathways to the final capsid. The flux through each pathway is controlled by the length of the RNA stem-loop triggering the assembly reaction and this effect can be understood in structural terms. The kinetics of intermediate formation have been studied and show steady-state concentrations for intermediates between starting materials and the T=3 shell, consistent with an assembly process in which all the steps are in equilibrium. These data have been used to derive a kinetic model of the assembly reaction that in turn allows us to determine the dominant assembly pathways explicitly, and to estimate the effect of the RNA on the free energy of association between the assembling protein subunits. The results reveal that there are only a small number of dominant assembly pathways, which vary depending on the relative ratios of RNA and protein. These results suggest that the genomic RNA plays significant roles in defining the precise assembly sub-pathway followed to create the final capsid.


Subject(s)
RNA, Viral/chemistry , Virus Assembly/physiology , Base Sequence , Capsid/chemistry , Capsid Proteins/chemistry , Kinetics , Levivirus/chemistry , Levivirus/genetics , Levivirus/physiology , Macromolecular Substances/chemistry , Mass Spectrometry , Models, Molecular , Nucleic Acid Conformation , Protein Subunits , RNA, Viral/genetics , Thermodynamics , Virus Assembly/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...