Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Macro Lett ; : 889-895, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959296

ABSTRACT

Single-chain polymer nanoparticles (SCNPs) combine the chemical diversity of synthetic polymers with the intricate structure of biopolymers, generating versatile biomimetic materials. The mobility of polymer chain segments at length scales similar to secondary structural elements in proteins is critical to SCNP structure and thus function. However, the influence of noncovalent interactions used to form SCNPs (e.g., hydrogen-bonding and biomimetic secondary-like structure) on these conformational dynamics is challenging to quantitatively assess. To isolate the effects of noncovalent interactions on SCNP structure and conformational dynamics, we synthesized a series of amphiphilic copolymers containing dimethylacrylamide and monomers capable of forming these different interactions: (1) di(phenylalanine) acrylamide that forms intramolecular ß-sheet-like cross-links, (2) phenylalanine acrylamide that forms hydrogen-bonds but lacks a defined local structure, and (3) benzyl acrylamide that has the lowest propensity for hydrogen-bonding. Each SCNP formed folded structures comparable to those of intrinsically disordered proteins, as observed by size exclusion chromatography and small angle neutron scattering. The dynamics of these polymers, as characterized by a combination of dynamic light scattering and neutron spin echo spectroscopy, was well described using the Zimm with internal friction (ZIF) model, highlighting the role of each noncovalent interaction to additively restrict the internal relaxations of SCNPs. These results demonstrate the utility of local scale interactions to control SCNP polymer dynamics, guiding the design of functional biomimetic materials with refined binding sites and tunable kinetics.

2.
J Am Chem Soc ; 146(12): 8607-8617, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38470430

ABSTRACT

Macromolecule sequence, structure, and function are inherently intertwined. While well-established relationships exist in proteins, they are more challenging to define for synthetic polymer nanoparticles due to their molecular weight, sequence, and conformational dispersities. To explore the impact of sequence on nanoparticle structure, we synthesized a set of 16 compositionally identical, sequence-controlled polymers with distinct monomer patterning of dimethyl acrylamide and a bioinspired, structure-driving di(phenylalanine) acrylamide (FF). Sequence control was achieved through multiblock polymerizations, yielding unique ensembles of polymer sequences which were simulated by kinetic Monte Carlo simulations. Systematic analysis of the global (tertiary- and quaternary-like) structure in this amphiphilic copolymer series revealed the effect of multiple sequence descriptors: the number of domains, the hydropathy of terminal domains, and the patchiness (density) of FF within a domain, each of which impacted both chain collapse and the distribution of single- and multichain assemblies. Furthermore, both the conformational freedom of chain segments and local-scale, ß-sheet-like interactions were sensitive to the patchiness of FF. To connect sequence, structure, and target function, we evaluated an additional series of nine sequence-controlled copolymers as sequestrants for rare earth elements (REEs) by incorporating a functional acrylic acid monomer into select polymer scaffolds. We identified key sequence variables that influence the binding affinity, capacity, and selectivity of the polymers for REEs. Collectively, these results highlight the potential of and boundaries of sequence control via multiblock polymerizations to drive primary sequence ensembles hierarchical structures, and ultimately the functionality of compositionally identical polymeric materials.

4.
J Am Chem Soc ; 143(33): 13228-13234, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34375094

ABSTRACT

While methods for polymer synthesis have proliferated, their functionality pales in comparison to natural biopolymers-strategies are limited for building the intricate network of noncovalent interactions necessary to elicit complex, protein-like functions. Using a bioinspired di(phenylalanine) acrylamide (FF) monomer, we explored the impact of various noncovalent interactions in generating ordered assembled structures. Amphiphilic copolymers were synthesized that exhibit ß-sheet-like local structure upon collapsing into single-chain assemblies in aqueous environments. Systematic analysis of a series of amphiphilic copolymers illustrated that the global collapse is primarily driven by hydrophobic forces. Hydrogen-bonding and aromatic interactions stabilize local structure, as ß-sheet-like interactions were identified via circular dichroism and thioflavin T fluorescence. Similar analysis of phenylalanine (F) and alanine-phenylalanine acrylamide (AF) copolymers found that distancing the aromatic residue from the polymer backbone is sufficient to induce ß-sheet-like local structure akin to the FF copolymers; however, the interactions between AF subunits are less stable than those formed by FF. Further, hydrogen-bond donating hydrophilic monomers disrupt internal structure formed by FF within collapsed assemblies. Collectively, these results illuminate design principles for the facile incorporation of multiple facets of protein-mimetic, higher-order structure within folded synthetic polymers.


Subject(s)
Phenylalanine/chemistry , Polymers/chemistry , Surface-Active Agents/chemistry , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...