Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 35(35): e2301747, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37199190

ABSTRACT

Damping mechanical resonances is a formidable challenge in an increasing number of applications. Many passive damping methods rely on using low stiffness, complex mechanical structures or electrical systems, which render them unfeasible in many of these applications. Herein, a new method for passive vibration damping, by allowing buckling of the primary load path in mechanical metamaterials and lattice structures, is introduced, which sets an upper limit for vibration transmission: the transmitted acceleration saturates at a maximum value in both tension and compression, no matter what the input acceleration is. This nonlinear mechanism leads to an extreme damping coefficient tanδ ≈ 0.23 in a metal metamaterial-orders of magnitude larger than the linear damping coefficient of traditional lightweight structural materials. This principle is demonstrated experimentally and numerically in free-standing rubber and metal mechanical metamaterials over a range of accelerations. It is also shown that damping nonlinearities even allow buckling-based vibration damping to work in tension, and that bidirectional buckling can further improve its performance. Buckling metamaterials pave the way toward extreme vibration damping without mass or stiffness penalty, and, as such, could be applicable in a multitude of high-tech applications, including aerospace, vehicles, and sensitive instruments.

2.
Proc Natl Acad Sci U S A ; 118(21)2021 May 25.
Article in English | MEDLINE | ID: mdl-34001603

ABSTRACT

Mechanical metamaterials are artificial composites that exhibit a wide range of advanced functionalities such as negative Poisson's ratio, shape shifting, topological protection, multistability, extreme strength-to-density ratio, and enhanced energy dissipation. In particular, flexible metamaterials often harness zero-energy deformation modes. To date, such flexible metamaterials have a single property, for example, a single shape change, or are pluripotent, that is, they can have many different responses, but typically require complex actuation protocols. Here, we introduce a class of oligomodal metamaterials that encode a few distinct properties that can be selectively controlled under uniaxial compression. To demonstrate this concept, we introduce a combinatorial design space containing various families of metamaterials. These families include monomodal (i.e., with a single zero-energy deformation mode); oligomodal (i.e., with a constant number of zero-energy deformation modes); and plurimodal (i.e., with many zero-energy deformation modes), whose number increases with system size. We then confirm the multifunctional nature of oligomodal metamaterials using both boundary textures and viscoelasticity. In particular, we realize a metamaterial that has a negative (positive) Poisson's ratio for low (high) compression rate over a finite range of strains. The ability of our oligomodal metamaterials to host multiple mechanical responses within a single structure paves the way toward multifunctional materials and devices.

3.
Phys Rev Lett ; 117(9): 094301, 2016 Aug 26.
Article in English | MEDLINE | ID: mdl-27610857

ABSTRACT

A range of instabilities can occur in soft bodies that undergo large deformation. While most of them arise under compressive forces, it has previously been shown analytically that a tensile instability can occur in an elastic block subjected to equitriaxial tension. Guided by this result, we conducted centimeter-scale experiments on thick elastomeric samples under generalized plane strain conditions and observed for the first time this elastic tensile instability. We found that equibiaxial stretching leads to the formation of a wavy pattern, as regions of the sample alternatively flatten and extend in the out-of-plane direction. Our work uncovers a new type of instability that can be triggered in elastic bodies, enlarging the design space for smart structures that harness instabilities to enhance their functionality.

SELECTION OF CITATIONS
SEARCH DETAIL
...