Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Neurophotonics ; 11(Suppl 1): S11506, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38352728

ABSTRACT

Significance: Hair-thin multimode optical fiber-based holographic endoscopes have gained considerable interest in modern neuroscience for their ability to achieve cellular and even subcellular resolution during in-vivo deep brain imaging. However, the application of multimode fibers in freely moving animals presents a persistent challenge as it is difficult to maintain optimal imaging performance while the fiber undergoes deformations. Aim: We propose a fiber solution for challenging in-vivo applications with the capability of deep brain high spatial resolution imaging and neuronal activity monitoring in anesthetized as well as awake behaving mice. Approach: We used our previously developed M3CF multimode-multicore fiber to record fluorescently labeled neurons in anesthetized mice. Our M3CF exhibits a cascaded refractive index structure, enabling two distinct regimes of light transport that imitate either a multimode or a multicore fiber. The M3CF has been specifically designed for use in the initial phase of an in-vivo experiment, allowing for the navigation of the endoscope's distal end toward the targeted brain structure. The multicore regime enables the transfer of light to and from each individual neuron within the field of view. For chronic experiments in awake behaving mice, it is crucial to allow for disconnecting the fiber and the animal between experiments. Therefore, we provide here an effective solution and establish a protocol for reconnection of two segments of M3CF with hexagonally arranged corelets. Results: We successfully utilized the M3CF to image neurons in anaesthetized transgenic mice expressing enhanced green fluorescent protein. Additionally, we compared imaging results obtained with the M3CF with larger numerical aperture (NA) fibers in fixed whole-brain tissue. Conclusions: This study focuses on addressing challenges and providing insights into the use of multimode-multicore fibers as imaging solutions for in-vivo applications. We suggest that the upcoming version of the M3CF increases the overall NA between the two cladding layers to allow for access to high resolution spatial imaging. As the NA increases in the multimode regime, the fiber diameter and ring structure must be reduced to minimize the computational burden and invasiveness.

2.
Eur J Neurosci ; 56(2): 3861-3874, 2022 07.
Article in English | MEDLINE | ID: mdl-35545375

ABSTRACT

Food foraging is essential for the fitness of animals. Previous studies have suggested that optimal foraging strategies involve a cost-benefit analysis comparing reward versus effort to guide action choices. Little is known how prior experience with different actions to obtain rewards may affect subsequent foraging choices. Here, we report a sunflower seed foraging test to investigate how effort and prior actions influence decision-making in laboratory mice. Sunflower seeds are a natural food favourite for mice, and mice spend effort to peel the hard shells to obtain the seeds. In our test, peeled and unpeeled sunflower seeds were placed at different ends of a Y-maze. Mice were free to explore the maze and make foraging decisions. Naïve mice were more likely to choose peeled seeds requiring low effort versus unpeeled seeds requiring high effort. Furthermore, mice with prior seed peeling experience significantly reduced preference for peeled seeds during the subsequent Y-maze foraging test, compared with mice pre-exposed to peeled seeds only. This experience-dependent shift in foraging choice was associated with reduced seed peeling time and improved motor skills with practice, and predictable on a trial-by-trial basis by a probabilistic decision-making model with the amount of peeled and unpeeled seeds consumed as inputs. Together, these results suggest that laboratory mice make rational foraging choices based on effort estimation and moreover, prior actions to obtain reward alter effort estimation and decision-making through motor skill learning. This naturalist behavioural task may be applied to dissect neural mechanisms in adaptive decision-making during foraging.


Subject(s)
Choice Behavior , Decision Making , Animals , Cost-Benefit Analysis , Maze Learning , Mice , Reward
3.
Curr Biol ; 31(18): R1087-R1089, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34582817

ABSTRACT

The primary visual cortex has the capacity to store stimulus-specific information locally. A new study reveals a direct role for the hippocampus in experience-dependent cortical plasticity when visual stimuli are presented in a predictable temporal order.


Subject(s)
Visual Cortex , Hippocampus , Neuronal Plasticity , Primary Visual Cortex
4.
Curr Biol ; 30(10): 1866-1880.e5, 2020 05 18.
Article in English | MEDLINE | ID: mdl-32243857

ABSTRACT

The potential for neuronal representations of external stimuli to be modified by previous experience is critical for efficient sensory processing and improved behavioral outcomes. To investigate how repeated exposure to a visual stimulus affects its representation in mouse primary visual cortex (V1), we performed two-photon calcium imaging of layer 2/3 neurons and assessed responses before, during, and after the presentation of a repetitive stimulus over 5 consecutive days. We found a stimulus-specific enhancement of the neuronal representation of the repetitively presented stimulus when it was associated with a reward. This was observed both after mice actively learned a rewarded task and when the reward was randomly received. Stimulus-specific enhanced representation resulted both from neurons gaining selectivity and from increased response reliability in previously selective neurons. In the absence of reward, there was either no change in stimulus representation or a decreased representation when the stimulus was viewed at a fixed temporal frequency. Pairing a second stimulus with a reward led to a similar enhanced representation and increased discriminability between the equally rewarded stimuli. Single-neuron responses showed that separate subpopulations discriminated between the two rewarded stimuli depending on whether the stimuli were displayed in a virtual environment or viewed on a single screen. We suggest that reward-associated responses enable the generalization of enhanced stimulus representation across these V1 subpopulations. We propose that this dynamic regulation of visual processing based on the behavioral relevance of sensory input ultimately enhances and stabilizes the representation of task-relevant features while suppressing responses to non-relevant stimuli.


Subject(s)
Reward , Visual Cortex/physiology , Water , Animals , Drinking , Female , Male , Mice , Mice, Inbred C57BL , Orientation
5.
Sci Rep ; 8(1): 3493, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29472547

ABSTRACT

In vivo calcium imaging has become a method of choice to image neuronal population activity throughout the nervous system. These experiments generate large sequences of images. Their analysis is computationally intensive and typically involves motion correction, image segmentation into regions of interest (ROIs), and extraction of fluorescence traces from each ROI. Out of focus fluorescence from surrounding neuropil and other cells can strongly contaminate the signal assigned to a given ROI. In this study, we introduce the FISSA toolbox (Fast Image Signal Separation Analysis) for neuropil decontamination. Given pre-defined ROIs, the FISSA toolbox automatically extracts the surrounding local neuropil and performs blind-source separation with non-negative matrix factorization. Using both simulated and in vivo data, we show that this toolbox performs similarly or better than existing published methods. FISSA requires only little RAM, and allows for fast processing of large datasets even on a standard laptop. The FISSA toolbox is available in Python, with an option for MATLAB format outputs, and can easily be integrated into existing workflows. It is available from Github and the standard Python repositories.

7.
Elife ; 52016 08 23.
Article in English | MEDLINE | ID: mdl-27552056

ABSTRACT

Cortical responses to sensory stimuli are modulated by behavioral state. In the primary visual cortex (V1), visual responses of pyramidal neurons increase during locomotion. This response gain was suggested to be mediated through inhibitory neurons, resulting in the disinhibition of pyramidal neurons. Using in vivo two-photon calcium imaging in layers 2/3 and 4 in mouse V1, we reveal that locomotion increases the activity of vasoactive intestinal peptide (VIP), somatostatin (SST) and parvalbumin (PV)-positive interneurons during visual stimulation, challenging the disinhibition model. In darkness, while most VIP and PV neurons remained locomotion responsive, SST and excitatory neurons were largely non-responsive. Context-dependent locomotion responses were found in each cell type, with the highest proportion among SST neurons. These findings establish that modulation of neuronal activity by locomotion is context-dependent and contest the generality of a disinhibitory circuit for gain control of sensory responses by behavioral state.


Subject(s)
Behavior, Animal , Locomotion , Visual Cortex/physiology , Animals , Interneurons/physiology , Mice , Models, Neurological , Pyramidal Cells/physiology
8.
Article in English | MEDLINE | ID: mdl-26018072

ABSTRACT

We investigated the responses of medullary lateral line units of the rudd, Scardinius erythrophthalmus, to bulk water flow (7 cm s(-1)) and to water flow that contained vortices shed by an upstream half cylinder (diameter 1, 2, and 3 cm). Thirty-five percent of the medullary units either increased or decreased their discharge rate with the increasing cylinder diameter. In some units, the spike patterns revealed the vortex shedding frequency, i.e., in these units the amplitude of spike train frequency spectra was similar or identical to the vortex shedding frequency.


Subject(s)
Cyprinidae/physiology , Hydrodynamics , Lateral Line System/physiology , Medulla Oblongata/physiology , Motion Perception/physiology , Neurons/physiology , Action Potentials , Analysis of Variance , Animals , Fourier Analysis , Linear Models , Microelectrodes , Physical Stimulation , Signal Processing, Computer-Assisted , Water
9.
Proc Biol Sci ; 280(1763): 20130853, 2013 Jul 22.
Article in English | MEDLINE | ID: mdl-23720547

ABSTRACT

The avian magnetic compass works in a fairly narrow functional window around the intensity of the local geomagnetic field, but adjusts to intensities outside this range when birds experience these new intensities for a certain time. In the past, the geomagnetic field has often been much weaker than at present. To find out whether birds can obtain directional information from a weak magnetic field, we studied spontaneous orientation preferences of migratory robins in a 4 µT field (i.e. a field of less than 10 per cent of the local intensity of 47 µT). Birds can adjust to this low intensity: they turned out to be disoriented under 4 µT after a pre-exposure time of 8 h to 4 µT, but were able to orient in this field after a total exposure time of 17 h. This demonstrates a considerable plasticity of the avian magnetic compass. Orientation in the 4 µT field was not affected by local anaesthesia of the upper beak, but was disrupted by a radiofrequency magnetic field of 1.315 MHz, 480 nT, suggesting that a radical-pair mechanism still provides the directional information in the low magnetic field. This is in agreement with the idea that the avian magnetic compass may have developed already in the Mesozoic in the common ancestor of modern birds.


Subject(s)
Flight, Animal/physiology , Magnetic Phenomena , Orientation/physiology , Songbirds/physiology , Animal Migration , Animals , Beak/physiology , Beak/radiation effects , Birds , Magnetic Fields , Orientation/radiation effects , Radio Waves
SELECTION OF CITATIONS
SEARCH DETAIL
...