Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
bioRxiv ; 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36993449

ABSTRACT

Prostate cancer (PCa) is the second leading cause of cancer death for men in the United States. While organ-confined disease has reasonable expectation of cure, metastatic PCa is universally fatal upon recurrence during hormone therapy, a stage termed castration-resistant prostate cancer (CRPC). Until such time as molecularly defined subtypes can be identified and targeted using precision medicine, it is necessary to investigate new therapies that may apply to the CRPC population as a whole. The administration of ascorbate, more commonly known as ascorbic acid or Vitamin C, has proved lethal to and highly selective for a variety of cancer cell types. There are several mechanisms currently under investigation to explain how ascorbate exerts anti-cancer effects. A simplified model depicts ascorbate as a pro-drug for reactive oxygen species (ROS), which accumulate intracellularly and generate DNA damage. It was therefore hypothesized that poly(ADP-ribose) polymerase (PARP) inhibitors, by inhibiting DNA damage repair, would augment the toxicity of ascorbate. Results: Two distinct CRPC models were found to be sensitive to physiologically relevant doses of ascorbate. Moreover, additional studies indicate that ascorbate inhibits CRPC growth in vitro via multiple mechanisms including disruption of cellular energy dynamics and accumulation of DNA damage. Combination studies were performed in CRPC models with ascorbate in conjunction with escalating doses of three different PARP inhibitors (niraparib, olaparib, and talazoparib). The addition of ascorbate augmented the toxicity of all three PARP inhibitors and proved synergistic with olaparib in both CRPC models. Finally, the combination of olaparib and ascorbate was tested in vivo in both castrated and non-castrated models. In both cohorts, the combination treatment significantly delayed tumor growth compared to monotherapy or untreated control. Conclusions: These data indicate that pharmacological ascorbate is an effective monotherapy at physiological concentrations and kills CRPC cells. Ascorbate-induced tumor cell death was associated with disruption of cellular energy dynamics and accumulation of DNA damage. The addition of PARP inhibition increased the extent of DNA damage and proved effective at slowing CRPC growth both in vitro and in vivo. These findings nominate ascorbate and PARPi as a novel therapeutic regimen that has the potential to improve CRPC patient outcomes.

2.
Clin Cancer Res ; 28(7): 1446-1459, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35078861

ABSTRACT

PURPOSE: DNA-dependent protein kinase catalytic subunit (DNA-PKcs, herein referred as DNA-PK) is a multifunctional kinase of high cancer relevance. DNA-PK is deregulated in multiple tumor types, including prostate cancer, and is associated with poor outcomes. DNA-PK was previously nominated as a therapeutic target and DNA-PK inhibitors are currently undergoing clinical investigation. Although DNA-PK is well studied in DNA repair and transcriptional regulation, much remains to be understood about the way by which DNA-PK drives aggressive disease phenotypes. EXPERIMENTAL DESIGN: Here, unbiased proteomic and metabolomic approaches in clinically relevant tumor models uncovered a novel role of DNA-PK in metabolic regulation of cancer progression. DNA-PK regulation of metabolism was interrogated using pharmacologic and genetic perturbation using in vitro cell models, in vivo xenografts, and ex vivo in patient-derived explants (PDE). RESULTS: Key findings reveal: (i) the first-in-field DNA-PK protein interactome; (ii) numerous DNA-PK novel partners involved in glycolysis; (iii) DNA-PK interacts with, phosphorylates (in vitro), and increases the enzymatic activity of glycolytic enzymes ALDOA and PKM2; (iv) DNA-PK drives synthesis of glucose-derived pyruvate and lactate; (v) DNA-PK regulates glycolysis in vitro, in vivo, and ex vivo; and (vi) combination of DNA-PK inhibitor with glycolytic inhibitor 2-deoxyglucose leads to additive anti-proliferative effects in aggressive disease. CONCLUSIONS: Findings herein unveil novel DNA-PK partners, substrates, and function in prostate cancer. DNA-PK impacts glycolysis through direct interaction with glycolytic enzymes and modulation of enzymatic activity. These events support energy production that may contribute to generation and/or maintenance of DNA-PK-mediated aggressive disease phenotypes.


Subject(s)
DNA-Activated Protein Kinase , Prostatic Neoplasms, Castration-Resistant , DNA , DNA-Activated Protein Kinase/genetics , DNA-Activated Protein Kinase/metabolism , Glycolysis , Humans , Male , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Proteomics , Pyruvate Kinase/metabolism
3.
Cancer Res ; 82(2): 221-234, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34625422

ABSTRACT

The retinoblastoma tumor suppressor (RB) is a critical regulator of E2F-dependent transcription, controlling a multitude of protumorigenic networks including but not limited to cell-cycle control. Here, genome-wide assessment of E2F1 function after RB loss in isogenic models of prostate cancer revealed unexpected repositioning and cooperation with oncogenic transcription factors, including the major driver of disease progression, the androgen receptor (AR). Further investigation revealed that observed AR/E2F1 cooperation elicited novel transcriptional networks that promote cancer phenotypes, especially as related to evasion of cell death. These observations were reflected in assessment of human disease, indicating the clinical relevance of the AR/E2F1 cooperome in prostate cancer. Together, these studies reveal new mechanisms by which RB loss induces cancer progression and highlight the importance of understanding the targets of E2F1 function. SIGNIFICANCE: This study identifies that RB loss in prostate cancer drives cooperation between AR and E2F1 as coregulators of transcription, which is linked to the progression of advanced disease.


Subject(s)
Carcinogenesis/genetics , E2F1 Transcription Factor/metabolism , Oncogene Proteins/metabolism , Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism , Retinoblastoma Binding Proteins/metabolism , Signal Transduction/genetics , Ubiquitin-Protein Ligases/metabolism , Apoptosis/genetics , Binding Sites , Cell Line, Tumor , Cell Survival/genetics , Cohort Studies , E2F1 Transcription Factor/genetics , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Male , Oncogene Proteins/genetics , Oncogenes , Prostatic Neoplasms/pathology , Protein Binding/genetics , Retinoblastoma Binding Proteins/genetics , Transfection , Ubiquitin-Protein Ligases/genetics
4.
Oncogene ; 41(3): 444-458, 2022 01.
Article in English | MEDLINE | ID: mdl-34773073

ABSTRACT

The tumor suppressor gene TP53 is the most frequently mutated gene in numerous cancer types, including prostate cancer (PCa). Specifically, missense mutations in TP53 are selectively enriched in PCa, and cluster to particular "hot spots" in the p53 DNA binding domain with mutation at the R273 residue occurring most frequently. While this residue is similarly mutated to R273C-p53 or R273H-p53 in all cancer types examined, in PCa selective enrichment of R273C-p53 is observed. Importantly, examination of clinical datasets indicated that TP53 heterozygosity can either be maintained or loss of heterozygosity (LOH) occurs. Thus, to mimic tumor-associated mutant p53, R273C-p53 and R273H-p53 isogenic PCa models were developed in the presence or absence of wild-type p53. In the absence of wild-type p53, both R273C-p53 and R273H-p53 exhibited similar loss of DNA binding, transcriptional profiles, and loss of canonical tumor suppressor functions associated with wild-type p53. In the presence of wild-type p53 expression, both R273C-p53 and R273H-p53 supported canonical p53 target gene expression yet elicited distinct cistromic and transcriptional profiles when compared to each other. Moreover, heterozygous modeling of R273C-p53 or R273H-p53 expression resulted in distinct phenotypic outcomes in vitro and in vivo. Thus, mutant p53 acts in a context-dependent manner to elicit pro-tumorigenic transcriptional profiles, providing critical insight into mutant p53-mediated prostate cancer progression.


Subject(s)
Carcinogenesis/genetics , Prostatic Neoplasms/genetics , Tumor Suppressor Protein p53/metabolism , Humans , Male , Phenotype
5.
Cancer Res ; 82(4): 523-533, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34893509

ABSTRACT

DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a pleiotropic protein kinase that plays critical roles in cellular processes fundamental to cancer. DNA-PKcs expression and activity are frequently deregulated in multiple hematologic and solid tumors and have been tightly linked to poor outcome. Given the potentially influential role of DNA-PKcs in cancer development and progression, therapeutic targeting of this kinase is being tested in preclinical and clinical settings. This review summarizes the latest advances in the field, providing a comprehensive discussion of DNA-PKcs functions in cancer and an update on the clinical assessment of DNA-PK inhibitors in cancer therapy.


Subject(s)
DNA-Activated Protein Kinase/genetics , Energy Metabolism/genetics , Gene Expression Regulation, Neoplastic , Immunity/genetics , Neoplasms/genetics , Protein Biosynthesis/genetics , Animals , Clinical Trials as Topic , DNA-Activated Protein Kinase/antagonists & inhibitors , DNA-Activated Protein Kinase/metabolism , Humans , Neoplasms/drug therapy , Neoplasms/enzymology , Protein Kinase Inhibitors/therapeutic use , Substrate Specificity , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics
6.
Cancer Discov ; 11(9): 2334-2353, 2021 09.
Article in English | MEDLINE | ID: mdl-33879449

ABSTRACT

Loss of the retinoblastoma (RB) tumor suppressor protein is a critical step in reprogramming biological networks that drive cancer progression, although mechanistic insight has been largely limited to the impact of RB loss on cell-cycle regulation. Here, isogenic modeling of RB loss identified disease stage-specific rewiring of E2F1 function, providing the first-in-field mapping of the E2F1 cistrome and transcriptome after RB loss across disease progression. Biochemical and functional assessment using both in vitro and in vivo models identified an unexpected, prominent role for E2F1 in regulation of redox metabolism after RB loss, driving an increase in the synthesis of the antioxidant glutathione, specific to advanced disease. These E2F1-dependent events resulted in protection from reactive oxygen species in response to therapeutic intervention. On balance, these findings reveal novel pathways through which RB loss promotes cancer progression and highlight potentially new nodes of intervention for treating RB-deficient cancers. SIGNIFICANCE: This study identifies stage-specific consequences of RB loss across cancer progression that have a direct impact on tumor response to clinically utilized therapeutics. The study herein is the first to investigate the effect of RB loss on global metabolic regulation and link RB/E2F1 to redox control in multiple advanced diseases.This article is highlighted in the In This Issue feature, p. 2113.


Subject(s)
E2F1 Transcription Factor/genetics , Retinal Neoplasms/genetics , Retinoblastoma Protein/genetics , Retinoblastoma/genetics , Animals , Cell Line, Tumor , Humans , Mice , Neoplasm Metastasis , Retinal Neoplasms/pathology , Retinoblastoma/secondary , Signal Transduction , Xenograft Model Antitumor Assays
7.
Nat Commun ; 12(1): 401, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33452241

ABSTRACT

Mechanisms regulating DNA repair processes remain incompletely defined. Here, the circadian factor CRY1, an evolutionally conserved transcriptional coregulator, is identified as a tumor specific regulator of DNA repair. Key findings demonstrate that CRY1 expression is androgen-responsive and associates with poor outcome in prostate cancer. Functional studies and first-in-field mapping of the CRY1 cistrome and transcriptome reveal that CRY1 regulates DNA repair and the G2/M transition. DNA damage stabilizes CRY1 in cancer (in vitro, in vivo, and human tumors ex vivo), which proves critical for efficient DNA repair. Further mechanistic investigation shows that stabilized CRY1 temporally regulates expression of genes required for homologous recombination. Collectively, these findings reveal that CRY1 is hormone-induced in tumors, is further stabilized by genomic insult, and promotes DNA repair and cell survival through temporal transcriptional regulation. These studies identify the circadian factor CRY1 as pro-tumorigenic and nominate CRY1 as a new therapeutic target.


Subject(s)
Carcinogenesis/genetics , Cryptochromes/metabolism , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms, Castration-Resistant/genetics , Recombinational DNA Repair/genetics , Aged , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/therapeutic use , Androgens/metabolism , Carcinogenesis/drug effects , Cell Line, Tumor , Chromatin Immunoprecipitation Sequencing , Cryptochromes/genetics , DNA Breaks, Double-Stranded/drug effects , Datasets as Topic , Disease Progression , Follow-Up Studies , G2 Phase Cell Cycle Checkpoints/genetics , Humans , Male , Middle Aged , Neoplasm Grading , Promoter Regions, Genetic/genetics , Prospective Studies , Prostate/pathology , Prostate/surgery , Prostatectomy , Prostatic Neoplasms, Castration-Resistant/mortality , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/therapy , RNA-Seq , Receptors, Androgen/metabolism , Recombinational DNA Repair/drug effects , Retrospective Studies
8.
Cancer Res ; 80(3): 430-443, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31740444

ABSTRACT

Emerging evidence indicates the deubiquitinase USP22 regulates transcriptional activation and modification of target substrates to promote pro-oncogenic phenotypes. Here, in vivo characterization of tumor-associated USP22 upregulation and unbiased interrogation of USP22-regulated functions in vitro demonstrated critical roles for USP22 in prostate cancer. Specifically, clinical datasets validated that USP22 expression is elevated in prostate cancer, and a novel murine model demonstrated a hyperproliferative phenotype with prostate-specific USP22 overexpression. Accordingly, upon overexpression or depletion of USP22, enrichment of cell-cycle and DNA repair pathways was observed in the USP22-sensitive transcriptome and ubiquitylome using prostate cancer models of clinical relevance. Depletion of USP22 sensitized cells to genotoxic insult, and the role of USP22 in response to genotoxic insult was further confirmed using mouse adult fibroblasts from the novel murine model of USP22 expression. As it was hypothesized that USP22 deubiquitylates target substrates to promote protumorigenic phenotypes, analysis of the USP22-sensitive ubiquitylome identified the nucleotide excision repair protein, XPC, as a critical mediator of the USP22-mediated response to genotoxic insult. Thus, XPC undergoes deubiquitylation as a result of USP22 function and promotes USP22-mediated survival to DNA damage. Combined, these findings reveal unexpected functions of USP22 as a driver of protumorigenic phenotypes and have significant implications for the role of USP22 in therapeutic outcomes. SIGNIFICANCE: The studies herein present a novel mouse model of tumor-associated USP22 overexpression and implicate USP22 in modulation of cellular survival and DNA repair, in part through regulation of XPC.


Subject(s)
Carcinogenesis/pathology , Cell Proliferation , DNA Repair Enzymes/metabolism , DNA Repair , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/pathology , Ubiquitin Thiolesterase/metabolism , Animals , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinogenesis/genetics , Carcinogenesis/metabolism , DNA Damage , DNA Repair Enzymes/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Prognosis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Tumor Cells, Cultured , Ubiquitin Thiolesterase/genetics , Xenograft Model Antitumor Assays
9.
Clin Cancer Res ; 25(18): 5608-5622, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31266829

ABSTRACT

PURPOSE: Protein kinases are known to play a prominent role in oncogenic progression across multiple cancer subtypes, yet their role in prostate cancer progression remains underexplored. The purpose of this study was to identify kinases that drive prostate cancer progression.Experimental Design: To discover kinases that drive prostate cancer progression, we investigated the association between gene expression of all known kinases and long-term clinical outcomes in tumor samples from 545 patients with high-risk disease. We evaluated the impact of genetic and pharmacologic inhibition of the most significant kinase associated with metastatic progression in vitro and in vivo. RESULTS: DNA-dependent protein kinase (DNAPK) was identified as the most significant kinase associated with metastatic progression in high-risk prostate cancer. Inhibition of DNAPK suppressed the growth of both AR-dependent and AR-independent prostate cancer cells. Gene set enrichment analysis nominated Wnt as the top pathway associated with DNAPK. We found that DNAPK interacts with the Wnt transcription factor LEF1 and is critical for LEF1-mediated transcription. CONCLUSIONS: Our data show that DNAPK drives prostate cancer progression through transcriptional regulation of Wnt signaling and is an attractive therapeutic target in aggressive prostate cancer.


Subject(s)
DNA-Activated Protein Kinase/metabolism , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Transcription, Genetic , Wnt Signaling Pathway , Animals , Biomarkers, Tumor , Cell Line, Tumor , Cell Movement , DNA-Activated Protein Kinase/antagonists & inhibitors , DNA-Activated Protein Kinase/genetics , Disease Models, Animal , Disease Progression , Gene Expression Profiling , Gene Knockdown Techniques , Heterografts , Humans , Male , Mice , Neoplasm Metastasis , Phenotype , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Protein Binding , RNA, Small Interfering/genetics
10.
Clin Cancer Res ; 25(18): 5623-5637, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31266833

ABSTRACT

PURPOSE: DNA-dependent protein kinase catalytic subunit (DNA-PK) is a pleiotropic kinase involved in DNA repair and transcriptional regulation. DNA-PK is deregulated in selected cancer types and is strongly associated with poor outcome. The underlying mechanisms by which DNA-PK promotes aggressive tumor phenotypes are not well understood. Here, unbiased molecular investigation in clinically relevant tumor models reveals novel functions of DNA-PK in cancer.Experimental Design: DNA-PK function was modulated using both genetic and pharmacologic methods in a series of in vitro models, in vivo xenografts, and patient-derived explants (PDE), and the impact on the downstream signaling and cellular cancer phenotypes was discerned. Data obtained were used to develop novel strategies for combinatorial targeting of DNA-PK and hormone signaling pathways. RESULTS: Key findings reveal that (i) DNA-PK regulates tumor cell proliferation; (ii) pharmacologic targeting of DNA-PK suppresses tumor growth both in vitro, in vivo, and ex vivo; (iii) DNA-PK transcriptionally regulates the known DNA-PK-mediated functions as well as novel cancer-related pathways that promote tumor growth; (iv) dual targeting of DNA-PK/TOR kinase (TORK) transcriptionally upregulates androgen signaling, which can be mitigated using the androgen receptor (AR) antagonist enzalutamide; (v) cotargeting AR and DNA-PK/TORK leads to the expansion of antitumor effects, uncovering the modulation of novel, highly relevant protumorigenic cancer pathways; and (viii) cotargeting DNA-PK/TORK and AR has cooperative growth inhibitory effects in vitro and in vivo. CONCLUSIONS: These findings uncovered novel DNA-PK transcriptional regulatory functions and led to the development of a combinatorial therapeutic strategy for patients with advanced prostate cancer, currently being tested in the clinical setting.


Subject(s)
DNA-Activated Protein Kinase/metabolism , Neoplasms/metabolism , Androgen Receptor Antagonists/pharmacology , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor , Cell Line, Tumor , Cell Proliferation/drug effects , DNA-Activated Protein Kinase/antagonists & inhibitors , DNA-Activated Protein Kinase/genetics , Disease Models, Animal , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Mice , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptors, Androgen/metabolism , TOR Serine-Threonine Kinases/metabolism , Transcription, Genetic , Xenograft Model Antitumor Assays
11.
EMBO Mol Med ; 10(12)2018 12.
Article in English | MEDLINE | ID: mdl-30467127

ABSTRACT

PARP-1 holds major functions on chromatin, DNA damage repair and transcriptional regulation, both of which are relevant in the context of cancer. Here, unbiased transcriptional profiling revealed the downstream transcriptional profile of PARP-1 enzymatic activity. Further investigation of the PARP-1-regulated transcriptome and secondary strategies for assessing PARP-1 activity in patient tissues revealed that PARP-1 activity was unexpectedly enriched as a function of disease progression and was associated with poor outcome independent of DNA double-strand breaks, suggesting that enhanced PARP-1 activity may promote aggressive phenotypes. Mechanistic investigation revealed that active PARP-1 served to enhance E2F1 transcription factor activity, and specifically promoted E2F1-mediated induction of DNA repair factors involved in homologous recombination (HR). Conversely, PARP-1 inhibition reduced HR factor availability and thus acted to induce or enhance "BRCA-ness". These observations bring new understanding of PARP-1 function in cancer and have significant ramifications on predicting PARP-1 inhibitor function in the clinical setting.


Subject(s)
DNA Repair , E2F1 Transcription Factor/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Prostatic Neoplasms/pathology , Animals , Cell Line , Disease Progression , Gene Expression Profiling , Homologous Recombination , Humans , Immunohistochemistry , Male , Mice, Inbred BALB C , Tissue Array Analysis
12.
Eur Urol Oncol ; 1(4): 325-337, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30467556

ABSTRACT

BACKGROUND: Androgen deprivation therapy is a first-line treatment for disseminated prostate cancer (PCa). However, virtually all tumors become resistant and recur as castration-resistant PCa, which has no durable cure. One major hurdle in the development of more effective therapies is the lack of preclinical models that adequately recapitulate the heterogeneity of PCa, significantly hindering the ability to accurately predict therapeutic response. OBJECTIVE: To leverage the ex vivo culture method termed patient-derived explant (PDE) to examine the impact of PCa therapeutics on a patient-by-patient basis. DESIGN SETTING AND PARTICIPANTS: Fresh PCa tissue from patients who underwent radical prostatectomy was cultured as PDEs to examine therapeutic response. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The impact of genomic and chemical perturbations in PDEs was assessed using various parameters (eg, AR levels, Ki67 staining, and desmoplastic indices). RESULTS AND LIMITATIONS: PDE maintained the integrity of the native tumor microenvironment (TME), tumor tissue morphology, viability, and endogenous hormone signaling. Tumor cells in this model system exhibited de novo proliferative capacity. Examination of the native TME in the PDE revealed a first-in-field insight into patient-specific desmoplastic stromal indices and predicted responsiveness to AR-directed therapeutics. CONCLUSIONS: The PDE model allows for a comprehensive evaluation of individual tumors in their native TME to ultimately develop more effective therapeutic regimens tailored to individuals. Discernment of novel stromal markers may provide a basis for applying precision medicine in treating advanced PCa, which would have a transformative effect on patient outcomes. PATIENT SUMMARY: In this study, an innovative model system was used to more effectively mimic human disease. The patient-derived explant (PDE) system can be used to predict therapeutic response and identify novel targets in advanced disease. Thus, the PDE will be an asset for the development of novel metrics for the implementation of precision medicine in prostate cancer.The patient-derived explant (PDE) model allows for a comprehensive evaluation of individual human tumors in their native tumor microenvironment (TME). TME analysis revealed first-in-field insight into predicted tumor responsiveness to AR-directed therapeutics through evaluation of patient-specific desmoplastic stromal indices.

13.
Sci Rep ; 6: 33323, 2016 09 12.
Article in English | MEDLINE | ID: mdl-27616351

ABSTRACT

Pancreatic ductal adenocarcinoma (PDA) is a lethal disease, in part, because of the lack of effective targeted therapeutic options. MK-1775 (also known as AZD1775), a mitotic inhibitor, has been demonstrated to enhance the anti-tumor effects of DNA damaging agents such as gemcitabine. We evaluated the efficacy of MK-1775 alone or in combination with DNA damaging agents (MMC or oxaliplatin) in PDA cell lines that are either DNA repair proficient (DDR-P) or deficient (DDR-D). PDA cell lines PL11, Hs 766T and Capan-1 harboring naturally selected mutations in DNA repair genes FANCC, FANCG and BRCA2 respectively, were less sensitive to MK-1775 as compared to two out of four representative DDR-P (MIA PaCa2 and PANC-1) cell lines. Accordingly, DDR-P cells exhibit reduced sensitivity to MK-1775 upon siRNA silencing of DNA repair genes, BRCA2 or FANCD2, compared to control cells. Only DDR-P cells showed increased apoptosis as a result of early mitotic entry and catastrophe compared to DDR-D cells. Taken together with other recently published reports, our results add another level of evidence that the efficacy of WEE1 inhibition is influenced by the DNA repair status of a cell and may also be dependent on the tumor type and model evaluated.


Subject(s)
Carcinoma, Pancreatic Ductal/drug therapy , Cell Cycle Proteins/antagonists & inhibitors , DNA Repair/drug effects , Nuclear Proteins/antagonists & inhibitors , Pancreatic Neoplasms/drug therapy , Protein-Tyrosine Kinases/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Apoptosis , Carcinoma, Pancreatic Ductal/genetics , Cell Line, Tumor , DNA Damage , DNA Repair Enzymes/genetics , Drug Resistance, Neoplasm , Drug Synergism , Humans , Inhibitory Concentration 50 , Mitomycin/pharmacology , Mitosis , Mutagens/pharmacology , Mutation , Organoplatinum Compounds/pharmacology , Oxaliplatin , Pancreatic Neoplasms/genetics , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Pyrimidinones
14.
Cancer Cell ; 28(1): 97-113, 2015 Jul 13.
Article in English | MEDLINE | ID: mdl-26175416

ABSTRACT

Emerging evidence demonstrates that the DNA repair kinase DNA-PKcs exerts divergent roles in transcriptional regulation of unsolved consequence. Here, in vitro and in vivo interrogation demonstrate that DNA-PKcs functions as a selective modulator of transcriptional networks that induce cell migration, invasion, and metastasis. Accordingly, suppression of DNA-PKcs inhibits tumor metastases. Clinical assessment revealed that DNA-PKcs is significantly elevated in advanced disease and independently predicts for metastases, recurrence, and reduced overall survival. Further investigation demonstrated that DNA-PKcs in advanced tumors is highly activated, independent of DNA damage indicators. Combined, these findings reveal unexpected DNA-PKcs functions, identify DNA-PKcs as a potent driver of tumor progression and metastases, and nominate DNA-PKcs as a therapeutic target for advanced malignancies.


Subject(s)
DNA-Activated Protein Kinase/genetics , DNA-Activated Protein Kinase/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Prostatic Neoplasms/pathology , Animals , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Male , Mice , Molecular Sequence Data , Neoplasm Invasiveness , Neoplasm Transplantation , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...