Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Mol Biol ; 365(3): 663-79, 2007 Jan 19.
Article in English | MEDLINE | ID: mdl-17070843

ABSTRACT

Proteins bind one another in aqua's solution to form tight and specific complexes. Previously we have shown that this is achieved through the modular architecture of the interaction network formed by the interface residues, where tight cooperative interactions are found within modules but not between them. Here we extend this study to cover the entire interface of TEM1 beta-lactamase and its protein inhibitor BLIP using an improved method for deriving interaction maps based on REDUCE to add hydrogen atoms and then by evaluating the interactions using modifications of the programs PROBE, NCI and PARE. An extensive mutagenesis study of the interface residues indeed showed that each module is energetically independent on other modules, and that cooperativity is found only within a module. By solving the X-ray structure of two interface mutations affecting two different modules, we demonstrated that protein-protein binding occur via the structural reorganization of the binding modules, either by a "lock and key" or an induced fit mechanism. To explain the cooperativity within a module, we performed multiple-mutant cycle analysis of cluster 2 resulting in a high-resolution energy map of this module. Mutant studies are usually done in reference to alanine, which can be regarded as a deletion of a side-chain. However, from a biological perspective, there is a major interest to understand non-Ala substitutions, as they are most common. Using X-ray crystallography and multiple-mutant cycle analysis we demonstrated the added complexity in understanding non-Ala mutations. Here, a double mutation replacing the wild-type Glu,Tyr to Tyr,Asn on TEM1 (res id 104,105) caused a major backbone structural rearrangement of BLIP, changing the composition of two modules but not of other modules within the interface. This shows the robustness of the modular approach, yet demonstrates the complexity of in silico protein design.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Monomeric GTP-Binding Proteins/chemistry , Monomeric GTP-Binding Proteins/metabolism , Protein Interaction Mapping , Alanine/genetics , Amino Acid Sequence , Binding Sites , Cluster Analysis , Models, Molecular , Molecular Sequence Data , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Mutation/genetics , Protein Binding , Protein Structure, Secondary , Thermodynamics
2.
Acta Crystallogr D Biol Crystallogr ; 62(Pt 10): 1137-49, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17001091

ABSTRACT

This paper reviews the developments in high-throughput and nanolitre-scale protein crystallography technologies within the remit of workpackage 4 of the Structural Proteomics In Europe (SPINE) project since the project's inception in October 2002. By surveying the uptake, use and experience of new technologies by SPINE partners across Europe, a picture emerges of highly successful adoption of novel working methods revolutionizing this area of structural biology. Finally, a forward view is taken of how crystallization methodologies may develop in the future.


Subject(s)
Crystallography/methods , Proteins/chemistry , Crystallography/instrumentation , Crystallography/trends , Image Processing, Computer-Assisted , Nanotechnology , Plastics , Proteomics , Quality Control , Robotics
3.
Acta Crystallogr D Biol Crystallogr ; 62(Pt 10): 1196-207, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17001096

ABSTRACT

The Structural Proteomics In Europe (SPINE) programme is aimed at the development and implementation of high-throughput technologies for the efficient structure determination of proteins of biomedical importance, such as those of bacterial and viral pathogens linked to human health. Despite the challenging nature of some of these targets, 175 novel pathogen protein structures (approximately 220 including complexes) have been determined to date. Here the impact of several technologies on the structural determination of proteins from human pathogens is illustrated with selected examples, including the parallel expression of multiple constructs, the use of standardized refolding protocols and optimized crystallization screens.


Subject(s)
Bacterial Infections/metabolism , Bacterial Proteins/chemistry , Proteomics/methods , Viral Proteins/chemistry , Virus Diseases/metabolism , Animals , Bacterial Infections/microbiology , Humans , Protein Folding , Virus Diseases/virology
4.
Acta Crystallogr D Biol Crystallogr ; 62(Pt 10): 1184-95, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17001095

ABSTRACT

SPINE (Structural Proteomics In Europe) was established in 2002 as an integrated research project to develop new methods and technologies for high-throughput structural biology. Development areas were broken down into workpackages and this article gives an overview of ongoing activity in the bioinformatics workpackage. Developments cover target selection, target registration, wet and dry laboratory data management and structure annotation as they pertain to high-throughput studies. Some individual projects and developments are discussed in detail, while those that are covered elsewhere in this issue are treated more briefly. In particular, this overview focuses on the infrastructure of the software that allows the experimentalist to move projects through different areas that are crucial to high-throughput studies, leading to the collation of large data sets which are managed and eventually archived and/or deposited.


Subject(s)
Computational Biology/statistics & numerical data , Proteomics/statistics & numerical data , Crystallization , Data Interpretation, Statistical , Information Management , Reverse Transcriptase Polymerase Chain Reaction , Software
5.
Proc Natl Acad Sci U S A ; 102(1): 57-62, 2005 Jan 04.
Article in English | MEDLINE | ID: mdl-15618400

ABSTRACT

Protein-protein interactions are essential for life. Yet, our understanding of the general principles governing binding is not complete. In the present study, we show that the interface between proteins is built in a modular fashion; each module is comprised of a number of closely interacting residues, with few interactions between the modules. The boundaries between modules are defined by clustering the contact map of the interface. We show that mutations in one module do not affect residues located in a neighboring module. As a result, the structural and energetic consequences of the deletion of entire modules are surprisingly small. To the contrary, within their module, mutations cause complex energetic and structural consequences. Experimentally, this phenomenon is shown on the interaction between TEM1-beta-lactamase and beta-lactamase inhibitor protein (BLIP) by using multiple-mutant analysis and x-ray crystallography. Replacing an entire module of five interface residues with Ala created a large cavity in the interface, with no effect on the detailed structure of the remaining interface. The modular architecture of binding sites, which resembles human engineering design, greatly simplifies the design of new protein interactions and provides a feasible view of how these interactions evolved.


Subject(s)
Models, Molecular , Proteins/chemistry , Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites/genetics , Binding Sites/physiology , Mutation , Protein Binding , Protein Structure, Tertiary , Proteins/genetics , Thermodynamics , beta-Lactamases/chemistry , beta-Lactamases/genetics , beta-Lactamases/metabolism
6.
Protein Sci ; 10(9): 1712-28, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11514662

ABSTRACT

We have analyzed structure-sequence relationships in 32 families of flavin adenine dinucleotide (FAD)-binding proteins, to prepare for genomic-scale analyses of this family. Four different FAD-family folds were identified, each containing at least two or more protein families. Three of these families, exemplified by glutathione reductase (GR), ferredoxin reductase (FR), and p-cresol methylhydroxylase (PCMH) were previously defined, and a family represented by pyruvate oxidase (PO) is newly defined. For each of the families, several conserved sequence motifs have been characterized. Several newly recognized sequence motifs are reported here for the PO, GR, and PCMH families. Each FAD fold can be uniquely identified by the presence of distinctive conserved sequence motifs. We also analyzed cofactor properties, some of which are conserved within a family fold while others display variability. Among the conserved properties is cofactor directionality: in some FAD-structural families, the adenine ring of the FAD points toward the FAD-binding domain, whereas in others the isoalloxazine ring points toward this domain. In contrast, the FAD conformation and orientation are conserved in some families while in others it displays some variability. Nevertheless, there are clear correlations among the FAD-family fold, the shape of the pocket, and the FAD conformation. Our general findings are as follows: (a) no single protein 'pharmacophore' exists for binding FAD; (b) in every FAD-binding family, the pyrophosphate moiety binds to the most strongly conserved sequence motif, suggesting that pyrophosphate binding is a significant component of molecular recognition; and (c) sequence motifs can identify proteins that bind phosphate-containing ligands.


Subject(s)
Flavin-Adenine Dinucleotide/metabolism , Proteins/chemistry , Proteins/metabolism , Amino Acid Motifs , Amino Acid Sequence , Binding Sites , Conserved Sequence , Glutathione Reductase/chemistry , Glutathione Reductase/metabolism , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/metabolism , Models, Molecular , Molecular Sequence Data , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Phosphates/metabolism , Protein Structure, Tertiary , Pyruvate Oxidase/chemistry , Pyruvate Oxidase/metabolism
7.
Proc Natl Acad Sci U S A ; 97(17): 9413-8, 2000 Aug 15.
Article in English | MEDLINE | ID: mdl-10944213

ABSTRACT

d-Lactate dehydrogenase (d-LDH) of Escherichia coli is a peripheral membrane respiratory enzyme involved in electron transfer, located on the cytoplasmic side of the inner membrane. d-LDH catalyzes the oxidation of d-lactate to pyruvate, which is coupled to transmembrane transport of amino acids and sugars. Here we describe the crystal structure at 1.9 A resolution of the three domains of d-LDH: the flavin adenine dinucleotide (FAD)-binding domain, the cap domain, and the membrane-binding domain. The FAD-binding domain contains the site of d-lactate reduction by a noncovalently bound FAD cofactor and has an overall fold similar to other members of a recently discovered FAD-containing family of proteins. This structural similarity extends to the cap domain as well. The most prominent difference between d-LDH and the other members of the FAD-containing family is the membrane-binding domain, which is either absent in some of these proteins or differs significantly. The d-LDH membrane-binding domain presents an electropositive surface with six Arg and five Lys residues, which presumably interacts with the negatively charged phospholipid head groups of the membrane. Thus, d-LDH appears to bind the membrane through electrostatic rather than hydrophobic forces.


Subject(s)
Escherichia coli/enzymology , L-Lactate Dehydrogenase/chemistry , Membrane Proteins/chemistry , Amino Acid Sequence , Binding Sites , Cell Membrane/metabolism , Cell Respiration , Crystallography, X-Ray , Flavin-Adenine Dinucleotide/metabolism , L-Lactate Dehydrogenase/metabolism , Lactic Acid/metabolism , Membrane Proteins/metabolism , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Alignment , Static Electricity
8.
Thromb Haemost ; 76(3): 283-91, 1996 Sep.
Article in English | MEDLINE | ID: mdl-8883260

ABSTRACT

We investigated the molecular basis for factor VII (FVII) deficiency in Israel and found that 13 patients were homozygous and 10 heterozygous for a C to T substitution at nucleotide 10648 of the FVII gene. This predicted an Ala244Val change and was associated with decreased FVII activity and antigen level. Of the 36 Ala244Val positive alleles, 20 were observed in patients of Moroccan origin, 10 in Iranian-Jewish patients and 6 in patients of other origins. A computer model of the serine protease domain of FVII suggested that the Ala244Val substitution may cause distortion of the entire protein structure. Intragenic polymorphic sites analyses disclosed a founder effect for the Moroccan and Iranian-Jewish patients. A survey of the Ala244Val mutation revealed an allele frequency of 1:42.5 in Moroccan Jews and 1:40 in Iranian Jews. As Moroccan Jews have been separated from Iranian Jews for more than two millennia, the data suggest that the Ala244Val mutation occurred in ancient times.


Subject(s)
Factor VII Deficiency/genetics , Factor VII/genetics , Jews , Alanine/genetics , Factor VII Deficiency/ethnology , Humans , Iran/ethnology , Israel/epidemiology , Morocco/ethnology , Mutation
9.
Science ; 267(5202): 1344-6, 1995 Mar 03.
Article in English | MEDLINE | ID: mdl-17812611

ABSTRACT

The high-resolution structure of halophilic malate dehydrogenase (hMDH) from the archaebacterium Haloarcula marismortui was determined by x-ray crystallography. Comparison of the three-dimensional structures of hMDH and its nonhalophilic congeners reveals structural features that may promote the stability of hMDH at high salt concentrations. These features include an excess of acidic over basic residues distributed on the enzyme surface and more salt bridges present in hMDH compared with its nonhalophilic counterparts. Other features that contribute to the stabilization of thermophilic lactate dehydrogenase and thermophilic MDH-the incorporation of alanine into alpha helices and the introduction of negatively charged amino acids near their amino termini, both of which stabilize the alpha helix as a result of interaction with the positive part of the alpha-helix dipole-also were observed in hMDH.

10.
Gen Comp Endocrinol ; 73(1): 157-63, 1989 Jan.
Article in English | MEDLINE | ID: mdl-2537778

ABSTRACT

alpha-Melanotropin (alpha-melanocyte-stimulating hormone, alpha-MSH) is a tridecapeptide, Ac-Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val-NH2. The minimal sequence of alpha-MSH required for agonism in the lizard (Anolis carolinensis) skin bioassay was determined to be Ac-His-Phe-Arg-Trp-NH2 (Ac-alpha-MSH6-9-NH2). Smaller fragments of this sequence (Ac-alpha-MSH6-8-NH2, Ac-alpha-MSH6-7-NH2, Ac-alpha-MSH7-9-NH2, and Ac-alpha-MSH7-8-NH2) were devoid of melanotropic activity. The tetrapeptide, Ac-alpha-MSH7-10-NH2, was also inactive, thus again demonstrating the importance of His at position 6 for minimal activity. The important potentiating amino acids were found to be Met-4, Lys-11, and Pro-12, since Ac-alpha-MSH4-10-NH2 was about 100 times more potent than Ac-alpha-MSH5-10-NH2, and Ac-[Nle4]-alpha-MSH4-11-NH2 was about 40 times more potent than Ac-alpha-MSH4-10-NH2 or Ac-[Nle4]-alpha-MSH4-10-NH2. Ac-alpha-MSH4-12-NH2 and Ac-[Nle4]-alpha-MSH4-12-NH2 were equipotent and about six times more potent than alpha-MSH. Since [Nle4]-alpha-MSH and Ac-[Nle4]-alpha-MSH4-13-NH2 were both equipotent but about sixfold less active than Ac-[Nle4]-alpha-MSH4-12-NH2, it is clear that valine at position 13 does not contribute to the potency of alpha-MSH, except possibly in a negative way. The minimal message sequence for equipotency to alpha-MSH appears to be Ac-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-NH2, since the analog, Ac-[Nle4]-alpha-MSH4-11-NH2, was as active as the native hormone. Ser-1, Tyr-2, Ser-3, Glu-5, and Val-13 are not important for melanotropic potency since Ac-alpha-MSH4-12-NH2 was more potent than alpha-MSH, and Ac-alpha-MSH5-10-NH2 and Ac-alpha-MSH6-10-NH2 were equipotent, being about 4,000 times less active than alpha-MSH.


Subject(s)
alpha-MSH , Amino Acid Sequence , Animals , Binding Sites , Lizards , Molecular Sequence Data , Peptide Fragments/analysis , Skin/analysis , Structure-Activity Relationship
11.
J Med Chem ; 30(11): 2126-30, 1987 Nov.
Article in English | MEDLINE | ID: mdl-2822931

ABSTRACT

The minimal sequence required for biological activity of alpha-MSH (alpha-melanotropin, alpha-melanocyte stimulating hormone) was determined in the frog (Rana pipiens) skin bioassay. The sequence required to elicit measurable biological activity was the central tetrapeptide sequence, Ac-His-Phe-Arg-Trp-NH2 (Ac-alpha-MSH6-9-NH2), which was about 6 orders of magnitude less potent than the native tridecapeptide. Smaller fragments of this sequence (Ac-His-Phe-NH2, Ac-Phe-Arg-NH2, Ac-His-Phe-Arg-NH2) were devoid of melanotropic activity at concentrations as high as 10(-4) M. We were unable to demonstrate biological activity for the tetrapeptide, Ac-Phe-Arg-Trp-Gly-NH2 (Ac-alpha-MSH7-10-NH2), and for several carboxy terminal analogues including Ac-Lys-Pro-Val-NH2 (Ac-alpha-MSH11-13-NH2). We prepared a series of fragment analogues of alpha-MSH in an attempt to determine the contribution of each individual amino acid to the biological activity of the native hormone. The minimal potency of Ac-alpha-MSH6-9-NH2 could be enhanced about a factor of 16 by the addition of glycine to the C-terminus, yielding Ac-alpha-MSH6-10-NH2 (Ac-His-Phe-Arg-Trp-Gly-NH2). Addition of glutamic acid to the N-terminus provided the peptide, Ac-alpha-MSH5-10-NH2, which was only slightly more potent than Ac-alpha-MSH6-10-NH2, indicating that position 5 contributes little to the biological potency of alpha-MSH in this assay. Addition of methionine to the N-terminus of Ac-alpha-MSH5-10-NH2 resulted in the heptapeptide, Ac-alpha-MSH4-10-NH2, which was only about 4-fold more potent than Ac-alpha-MSH5-10-NH2. Addition of lysine and proline to the C-terminal of the Ac-alpha-MSH4-10-NH2 sequence yielded the peptide, Ac-alpha-MSH4-12-NH2 with a 360-fold increase in potency relative to Ac-alpha-MSH4-10-NH2. This peptide was only about 6-fold less potent than alpha-MSH. A series of Nle-4-substituted analogues also were prepared. Ac-[Nle4]-alpha-MSH4-10-NH2 was about 4 times more potent than Ac-alpha-MSH4-10-NH2. Ac-[Nle4]-alpha-MSH4-11-NH2 also was about 4 times more potent than Ac-alpha-MSH4-10-NH2, demonstrating that lysine-11 contributes somewhat to the biological activity of alpha-MSH on the frog skin melanocyte receptor.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Peptide Fragments/pharmacology , alpha-MSH/pharmacology , Amino Acid Sequence , Animals , Binding Sites , Biological Assay , In Vitro Techniques , Rana pipiens , Skin/drug effects , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...