Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Chem Phys Lipids ; 232: 104968, 2020 10.
Article in English | MEDLINE | ID: mdl-32896519

ABSTRACT

The Langmuir monolayer technique has long been known for its usefulness to study the interaction between molecules and mimic cellular membranes to understand the mechanism of action of biologically relevant molecules. In this review we summarize the results that provided insight into the potential mechanism for lowering the plasma level of cholesterol by hypocholesterolemic substances (unsaturated fatty acids (UFAs) and phytocompounds) - in the aspect of prevention of atherosclerosis - and their effects on model biomembranes. The results on UFAs/cholesterol (oxysterols) interactions indicate that these systems are miscible and strongly interacting, contrary to immiscible systems containing saturated fatty acids. Lowering of cholesterol plasma level by UFAs was attributed to the strong affinity between UFAs and sterols, resulting in the formation of high stability complexes, in which sterols were bound and eliminated from the body. Studies on the effect of UFAs and plant sterols/stanols on simplified biomembranes (modeled as cholesterol/DPPC system) indicated that the studied hypocholesterolemic substances modify the biophysical properties of model membrane, affecting its fluidity and interactions between membrane components. Both UFAs and plant sterols/stanols were found to loosen interactions between DPPC and cholesterol and decrease membrane rigidity caused by the excess cholesterol in biomembrane, thus compensating strong condensing effect of cholesterol and restoring proper membrane fluidity, which is of utmost importance for normal cells functioning. The agreement between model - in vitro - studies and biological results prove the usefulness of the Langmuir monolayer technique, which helps in understanding the mode of action of biologically relevant substances.


Subject(s)
Cell Membrane/metabolism , Fatty Acids, Unsaturated/metabolism , Models, Molecular , Sterols/blood , Humans
2.
Chem Phys Lipids ; 225: 104819, 2019 12.
Article in English | MEDLINE | ID: mdl-31525379

ABSTRACT

Surface pressure (π) - molecular area (A) isotherms of cholesterol were precisely measured to get insight into the orientation of molecules in Langmuir monolayers, which allowed to obtain detailed information on their phase behaviour. This was possible from the detailed analysis of the interfacial compressibility modulus versus surface pressure (Cs-1- π) plots (obtained from the experimental surface pressure, π - area, A isotherms) and films thickness measurements (applying Brewster angle microscope, BAM) complemented with polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS). At first glance, the isotherm for cholesterol is characterized by the major slope change of surface pressure versus area per molecule. However, a more detailed analysis showed the presence of a discontinuity and slope change both upon the compression and expansion of the monolayer. This discontinuity is more accurately reflected in the Cs-1- π plot as a pseudo-plateau visible at π values between approximately 5 and 10 mN/m. This plateau was found to be temperature-dependent. Also, film thickness versus area plot (th-A) exhibits a pseudo-plateau in this region of surface pressures, in which the monolayer thickness increased gradually from 1.15 nm to 1.5 nm. Interestingly, although cholesterol has been intensively investigated in Langmuir monolayers, the existence of such a plateau have been overlooked previously. By linking experimental thickness values with theoretical molecular conformations, we have identified the presence of this plateau to the solid-solid (S-S') second-order transition. Using 2D analog of Clausius-Clapeyron equation, the thermodynamic functions (ΔH and ΔS) for this transition have been calculated. Based on monolayer experiments, the orientation of molecules in both solid phases was assumed to differ in the orientation of short alkyl chain attached to C17, which has additionally been confirmed with PM-IRRAS analysis.


Subject(s)
Cholesterol/chemistry , Air , Molecular Conformation , Particle Size , Phase Transition , Surface Properties , Water/chemistry
3.
Biochim Biophys Acta Biomembr ; 1861(8): 1428-1436, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31189076

ABSTRACT

Unsaturated fatty acids (UFAs) are known to lower the level of sterols in blood, which accounts for their cardioprotective effect. To understand the molecular basis of this effect, Langmuir monolayer studies have been performed. A series of UFAs differing in the length of the fatty acid chain and the number of double bonds (oleic acid, OA; linoleic acid, LA; stearidonic acid, SDA; eicosanoic acid, EA) were mixed with cholesterol and its more toxic oxidized derivative, 7­ketocholesterol (7-KC), abundantly present in atheroma plaques. Strong attractive UFA-sterol interactions were attributed to the formation of "surface complexes", in which sterol molecules are bound, thereby reducing the amount of free sterol molecules. It has been found that strength of interactions increases with the degree of unsaturation of the acyl chain in UFA molecule. The most attractive interactions correspond to mixtures with SDA containing 70 mol% of 7-KC and 50 mol% of cholesterol. In both cases, the formation of high stability complexes of, respectively, 2:1 and 1:1 sterol/SDA stoichiometry has been proposed. Other complexes of lower stability and 1:2 stoichiometry were postulated for chol (or 7-KC)/LA systems. The complexes of the lowest stability correspond to chol (or 7-KC) mixtures with OA and EA of 1:1 stoichiometry. In all the cases, the interactions of 7-KC with UFAs are more energetically favorable versus cholesterol. The elongation of the hydrophobic chain of UFAs decreased the interactions with the studied sterols. The obtained results can be related to different conformations of the fatty acids chains.


Subject(s)
Cholesterol/chemistry , Fatty Acids, Unsaturated/chemistry , Ketocholesterols/chemistry , Surface Properties , Thermodynamics
4.
Colloids Surf B Biointerfaces ; 174: 189-198, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30463048

ABSTRACT

In this work the Langmuir monolayer technique was used to study interactions between cholesterol (chol) and 7-ketocholesterol (7-KC) with saturated (arachidic acid, AA) and polyunsaturated fatty acids (PUFAs) (ω-3 α-linolenic acid, α-LA,and ω-6 γ- linolenic, γ-LA) in order to get insight into their potential role in atherosclerosis. For this study, surface pressure (π)-area (A) isotherms, compressibility modulus (Cs-1) versus π plots, Brewster angle microscopy (BAM) images and excess functions (Aexc and ΔGexc) were analysed. Different behaviour has been observed. For cholesterol/AA mixed monolayers, components immiscibility occurs, whatever the surface pressure or the mixtures composition is, whereas for the 7-KC/AA mixed system, ideal behaviour was observed at low and high surface pressures for all the investigated compositions. However, the remaining mixed studied systems (sterol/PUFA) exhibit negative deviations from the ideality, although some differences do occurr. The magnitude of these deviations depend on the kind of a PUFA (for ω-3 PUFA greater than for ω-6) - attributed to the different geometry of their acyl chains- and the type of a sterol (for 7-KC greater than for cholesterol).The strength of attractive interactions followed the order: chol/ γ-LA <7-KC/γ-LA < chol/α-LA < 7-KC/ α-LA, postulating the formation of stable complexes of 1:2 stoichiometry for 7-KC/α-LA mixed monolayers and 1:1 stoichiometry for chol/α-LA mixed films. For 7-KC/γ-LA system, the formation of a low stability complex of 2:1 stoichiometry was suggested. The existence of these complexes can play an important role in diminishing the circulating sterols in the blood stream, thus decreasing the probability of atherosclerotic plaques formation.


Subject(s)
Cholesterol/chemistry , Fatty Acids, Unsaturated/chemistry , Ketocholesterols/chemistry , Eicosanoic Acids/chemistry , Humans , Particle Size , Pressure , Surface Properties
5.
Colloids Surf B Biointerfaces ; 158: 634-642, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28756366

ABSTRACT

The behaviour of Langmuir monolayers corresponding to unsaturated fatty acids belonging to the omega-9 (oleic acid), omega-3 (α-linolenic and stearidonic acids) and omega-6 (linoleic, γ-linolenic and eicosadienoic acids) series was studied in order to get insight into the influence of various factors (such as subphase temperature, length, degree of unsaturation and position of the double bonds in the aliphatic chains) on the molecular conformation of these fatty acids spread at the A/W interface. The obtained results derived from the surface pressure - area isotherms, compressibility modulus and monolayer thickness prove that the lift-off and the limiting areas of investigated films increase both with the number of double bonds and length of the hydrocarbon chain. Also, the monolayers are more compressible (more fluid) upon increasing their tails unsaturation degree. However, eicosadienoic (EA) film is more rigid due to its longer acyl chain. Polyunsaturated fatty acids (PUFAs) monolayers, except for EA, exhibit anomalous temperature dependence (area contraction with increasing temperature), which was attributed to the increased solubility of PUFAs molecules with temperature. The recorded thickness values of the monolayers were compared with those estimated from theoretical molecular conformations in order to establish the orientation and configuration of molecules in different surface states of their monolayer.


Subject(s)
Fatty Acids, Unsaturated/chemistry , Fatty Acids/chemistry , Fatty Acids, Omega-3/chemistry , Oleic Acid/chemistry , Surface Properties , alpha-Linolenic Acid/chemistry
6.
Biophys Chem ; 140(1-3): 69-77, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19073357

ABSTRACT

This paper is aimed at investigating sterol/phospholipid interactions in the exact proportion that occurs in fungi/mammalian cells. We have performed a thorough analysis of surface pressure (pi)-area (A) isotherms with the Langmuir monolayer technique, complemented with Brewster angle microscopy (BAM) images. The following mixtures were analysed: cholesterol (Chol)-dipalmitoyl phosphatidylcholine (DPPC), Chol-dioleoyl phosphatidylcholine (DOPC), ergosterol (Erg)-DPPC, and Erg-DOPC. For each system, two different concentrations of the sterols were used, 13 and 30%, corresponding to the range of concentration found in various natural membranes. The obtained results show the existence of attractive interactions between phospholipids and cholesterol. Mixtures with ergosterol behave quite differently, i.e. either the interactions are repulsive (mixtures with DPPC) or the system is ideal (mixtures with DOPC). The obtained results have implications in the polyene antibiotics mode of action, i.e. the polyenes may interact easier with ergosterol, present in fungi cells, as compared to cholesterol--the main sterol of the mammalian cellular membranes.


Subject(s)
Membranes, Artificial , Phospholipids/metabolism , Sterols/metabolism , 1,2-Dipalmitoylphosphatidylcholine/chemistry , 1,2-Dipalmitoylphosphatidylcholine/metabolism , Animals , Cholesterol/chemistry , Cholesterol/metabolism , Ergosterol/chemistry , Ergosterol/metabolism , Fungi , Humans , Mammals , Microscopy/methods , Phase Transition , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Phospholipids/chemistry , Pressure , Sterols/chemistry , Surface Properties
7.
J Colloid Interface Sci ; 301(1): 258-66, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16797577

ABSTRACT

Effects of the subphase temperature on the surface pressure (pi)-area (A) isotherms of mixed monolayers of miltefosine (hexadecylphosphocholine), a potential anticancer drug, and cholesterol were investigated at the air/water interface, which were supplemented with Brewster angle microscopy (BAM) observations. Comparison of the collapse pressure values, mean molecular areas, excess areas and excess free energy of mixing between the mixed monolayer at various molar ratios and the pure component monolayers showed that, regardless of the subphase temperature, the investigated miltefosine-cholesterol system is much more stable than that the pure component monolayers, suggesting strong attractive interactions between miltefosine and cholesterol in mixed monolayers. As a consequence, it was postulated that stable "complexes" of the two components could form at the interface, for which stoichiometry may vary with the subphase temperature. Such "surface complexes" should be responsible for the contraction of the mean molecular area and thus the high stability of the mixed monolayer.


Subject(s)
Antineoplastic Agents/chemistry , Cholesterol/chemistry , Membranes, Artificial , Phosphorylcholine/analogs & derivatives , Adsorption , Air , Hydrogen-Ion Concentration , Microscopy , Models, Chemical , Phosphorylcholine/chemistry , Surface Properties , Surface Tension , Temperature , Water/chemistry
8.
J Colloid Interface Sci ; 299(2): 916-23, 2006 Jul 15.
Article in English | MEDLINE | ID: mdl-16545838

ABSTRACT

A series of semifluorinated n-alkanes (SFAs), of the general formula: (CF3)2CF(CF2)6(CH2)nH (in short iF9Hn), n = 11-20 have been synthesized and employed for Langmuir monolayer characterization. Surface pressure and electric surface potential measurements were performed in addition to Brewster angle microscopy results, which enabled both direct visualization of the monolayers structure and estimation of the monolayer thickness at different stages of compression. Our paper was aimed at investigating the influence of the iso-branching of the perfluorinated fragment of the SFA molecule on the surface behavior of these molecules at the air/water interface. It occurred that iF9 SFAs with the number of carbon atoms in the hydrogenated moiety from 11 to 20 are capable of Langmuir monolayer formation. Monolayers from iF9H11 to iF9H13 are instable, whereas those formed by iF9 SFAs with longer hydrogenated chains form stable films at the free surface of water. As compared to SFAs containing perfluorinated chain in a normal arrangement, iso-branched molecules have a greater tendency to aggregate. Lower stability of monolayers formed by iF9 SFAs as compared to F10 SFAs originated from the surface nucleation observed in BAM images, even at the very initial stages of compression. The dipole moment vector for iso-branched SFAs was found to be virtually aligned with the main axis of the molecule, contrary to F10 SFAs, where the dipole moment vector was calculated to be tilted with respect to the main molecular axis. Quantitative Brewster angle microscopy measurements (relative reflectivity experiments) enabled us to monitor the changes of monolayer thickness at different stages of monolayer compression.

9.
Langmuir ; 21(25): 11941-8, 2005 Dec 06.
Article in English | MEDLINE | ID: mdl-16316136

ABSTRACT

The surface properties of the neoglycolipid (GlcNAcE(3)G(28)) and of its PEO-lipid (E(3)G(28)) moiety mixed with phospholipids (dipalmitoylphosphatidylcholine, DPPC; distearoylphosphatidylcholine, DSPC; diarachidoylphosphatidylcholine, DAPC; and dibehenoylphosphatidylcholine, DBPC) were studied in Langmuir monolayers at various mixture compositions and surface pressures. The pi-A isotherms of the pure compounds revealed that because of the presence of the sugar group in its molecule, GlcNAcE(3)G(28) collapsed at a higher surface pressure and occupied a larger molecular area than the PEO-lipid moiety. It was also observed that the presence of the PEO-lipid (E(3)G(28)) in the mixtures triggered a strong alteration of both phospholipid pi-A isotherm profiles and surface diffraction spectra, an indication that the disordering of the initially structured phospholipid monolayers took place. Unlike E(3)G(28), GlcNAcE(3)G(28) did not disorganize phospholipid monolayers but generated a partial segregation of the film-forming components. The calculated excess free energies of mixing (DeltaG(exc)) for GlcNAcE(3)G(28)-phospholipid mixtures enabled us to predict the stability of such systems.


Subject(s)
Phospholipids , Surface Properties , Pressure
10.
Colloids Surf B Biointerfaces ; 46(1): 7-19, 2005 Nov 25.
Article in English | MEDLINE | ID: mdl-16198546

ABSTRACT

This work presents the results of Langmuir monolayers study of two amphotericin B derivatives obtained by N-acylation (N-acetylamphotericin B, Ac-AmB) and esterification (amphotericin B methyl ester, AME) of the parent AmB molecule. The main objective of present investigations was to examine the strength and nature of interactions of Ac-AmB and AME with natural membrane components as compared to AmB, and verify the monolayer results with biological studies in vitro. Our experiments were based on surface pressure-area measurements of mixed monolayers formed by the investigated antibiotics and sterols/DPPC. The interactions were analyzed with the following dependencies: compression modulus-surface pressure, mean molecular area-composition, excess molecular area-composition and excess free energy-composition plots. It has been found that both Ac-AmB and AME form monolayers of a liquid expanded state and their stability is highest as compared to AmB films. The investigated compounds mix in monolayers with natural membrane components within the whole range of the antibiotic mole fraction. The quantitative analysis of the interactions of the investigated antibiotics with sterols and DPPC as well as sterols/DPPC interactions allow us to verify the monolayer results with biological results. A good correlation between both kinds of studies has been found.


Subject(s)
Amphotericin B/chemistry , Anti-Bacterial Agents/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Acylation , Air , Biocompatible Materials/chemistry , Cholesterol/chemistry , Colloids/chemistry , Esters , Hydrogen-Ion Concentration , Inhibitory Concentration 50 , Membranes/chemistry , Models, Chemical , Models, Statistical , Pressure , Protein Binding , Sterols/chemistry , Surface Properties , Thermodynamics , Time Factors
11.
J Colloid Interface Sci ; 287(2): 476-84, 2005 Jul 15.
Article in English | MEDLINE | ID: mdl-15925613

ABSTRACT

N-(1-piperidinepropionyl)amphotericin B methyl ester (in short, PAME), a low-toxicity amphotericin B derivative, has been investigated in Langmuir monolayers at the air/water interface alone and in mixtures with cellular membrane sterols (a mammalian sterol, cholesterol, and a fungal sterol, ergosterol) and a model phospholipid (DPPC). The analysis of the strength of interaction between PAME and both sterols as well as DPPC was based, on surface pressure measurements and analysis of the isothermal compressibility (C(s)(-1)), the mean area per molecule (A(12)), the excess free energy of mixing (DeltaG(Exc)) and the total free energy of mixing (DeltaG(M)). It has been found that the interactions between PAME and sterols are attractive; however, their strength is significantly weaker for mixtures of PAME with cholesterol than with ergosterol. This casts light on the improved selectivity of PAME toward fungal cells. The strongest interactions, found for PAME/DPPC mixtures, proved an important role of DPPC in the mechanism of reduced toxicity of PAME as compared to amphotericin B. Due to stable complex formation between PAME and DPPC the antibiotic is immobilized with DPPC molecules, which reduces the concentration of free antibiotic, which is capable of interacting with membrane sterols.


Subject(s)
Amphotericin B/analogs & derivatives , Amphotericin B/chemistry , Antifungal Agents/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Amphotericin B/toxicity , Antifungal Agents/toxicity , Candida albicans/drug effects , Cell Membrane Structures/drug effects , Cholesterol/chemistry , Ergosterol/chemistry , Microbial Sensitivity Tests , Molecular Structure , Surface Properties , Thermodynamics
12.
Biophys Chem ; 116(1): 77-88, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15911084

ABSTRACT

Amphotericin B (AmB)--a polyene macrolide antibiotic--exhibits strong antifungal activity, however, is known to be very toxic to mammalian cells. In order to decrease AmB toxicity, a number of its derivatives have been synthesized. Basing on in vitro and in vivo research, it was evidenced that one of AmB derivatives, namely N-methyl-N-D-fructopyranosylamphotericin B methyl ester (in short MF-AME) retained most of the antifungal activity of the parent antibiotic, however, exhibited dramatically lower animal toxicity. Therefore, MF-AME seems to be a very promising modification product of AmB. However, further development of this derivative as potential new antifungal drug requires the elucidation of its molecular mechanism of reduced toxicity, which was the aim of the present investigations. Our studies were based on examining the binding energies by determining the strength of interaction between MF-AME and membrane sterols (ergosterol-fungi sterol, and cholesterol-mammalian sterol) and DPPC (model membrane phospholipid) using the Langmuir monolayer technique, which serves as a model of cellular membrane. Our results revealed that at low concentration the affinity of MF-AME to ergosterol is considerably stronger as compared to cholesterol, which correlates with the improved selective toxicity of this drug. It is of importance that the presence of phospholipids is essential since--due to very strong interactions between MF-AME and DPPC--the antibiotic used in higher concentration is "immobilized" by DPPC molecules, which reduces the concentration of free antibiotic, thus enabling it to selectively interact with both sterols.


Subject(s)
Amphotericin B/chemistry , Amphotericin B/toxicity , Antifungal Agents/chemistry , Antifungal Agents/toxicity , Cell Membrane/chemistry , Phospholipids/metabolism , Sterols/metabolism , Animals , Methyl Ethers/chemistry , Molecular Structure , Phospholipids/chemistry , Sterols/chemistry , Temperature , Water
13.
J Phys Chem B ; 109(31): 14965-70, 2005 Aug 11.
Article in English | MEDLINE | ID: mdl-16852895

ABSTRACT

The behavior of binary mixed Langmuir monolayers from gramicidin A (GA) and ethyl nonadecanoate (EN), spread on aqueous subphases containing NaCl and CaCl2, was investigated on the basis of the analysis of surface pressure-average area per molecule (pi-A) isotherms complemented with Brewster angle microscopy (BAM) images. Compression modulus versus surface pressure (C(S-1)-pi) curves indicate the existence of interactions in the GA-EN mixed monolayers at low surface pressures (below 5 mN m(-1)). However, for mixtures in which the ester is the predominant component, both GA and EN are miscible within regions from fully expanded to collapse. To examine the interactions between both components in the studied system, values of the mean molecular area per molecule (A12) were plotted as a function of molar fraction of gramicidin A (X(GA)). A12-X(GA) plots exhibit negative deviations from ideality at high surface pressures, wherein beta-helices of GA are vertically oriented in respect to the interface. However, at surface pressures below the plateau transition, which is due to reorientation of GA, the binary system obeys the additive rule. Brewster angle microscopy (BAM) was applied for a direct visualization of the monolayers morphologies. The obtained images prove that for molar ratios of GA > or = 0.3 and at surface pressures above 5 mN m(-1), both components are immiscible at the interface. The observed negative deviations from the additively rule were attributed to the formation of a three-dimensional phase in the mixed film, which provokes its contraction at the interface.

14.
Langmuir ; 20(26): 11414-21, 2004 Dec 21.
Article in English | MEDLINE | ID: mdl-15595764

ABSTRACT

Langmuir monolayers of oleoyl palmitoyl phosphatidyl ethanolamine (OPPE) were investigated at the air/water interface by means of surface pressure (pi)-area (A) isotherms complemented with Brewster angle microscopy images upon film compression/expansion. The characteristic phase transition appearing in the course of pi/A isotherms was attributed to the coexistence of two liquid-expanded phases of different molecular ordering. The interactions between OPPE and hexadecylphosphocholine (miltefosine) were studied at different subphase pHs (2, 6, and 10) at 20 degrees C and analyzed with mean molecular area (A12)-, excess area of mixing (Aexc)-, and excess free energy of mixing (DeltaGexc)-composition plots. The obtained results indicate that at pH 10, where both OPPE and miltefosine polar groups are negatively charged, attractive interactions are observed (reflected by negative deviations from ideality), contrary to expectation. This peculiar behavior is explained as being due both to water molecules, which surround negatively charged polar groups and increase the distance between them, weakening in this way the electrostatic repulsion forces; and to positively charged counterions present in the diffuse double layer, neutralizing their charge. In this way, the van der Waals attraction forces between hydrocarbon tails of both molecules predominate and are responsible for the observed negative deviations from ideal behavior. Similar explanations are given for the observed negative deviations at pH 2 where both polar groups are positively charged. At pH 6, the observed negative deviations at low surface pressures and positive deviations at high pressures are interpreted as being due to a change in orientation of polar groups upon monolayer compression.


Subject(s)
Phosphorylcholine/analogs & derivatives , Ethanolamines , Hydrogen-Ion Concentration , Phase Transition , Phosphorylcholine/chemistry , Pressure , Surface Properties
15.
J Colloid Interface Sci ; 279(2): 552-8, 2004 Nov 15.
Article in English | MEDLINE | ID: mdl-15464824

ABSTRACT

Langmuir monolayers of a homologous series of perfluorododecyl-n-alkanes (general formula F(CF2)12(CH2)nH, abbreviated as F12Hn, where n = 6-20) are investigated through isotherms of surface pressure (pi) and electric surface potential (DeltaV) versus area (A) and quantitative Brewster angle microscopy. The investigated monolayers are found to be liquid in nature. The negative sign of the measured surface potential evidences the orientation of all the investigated molecules with their perfluorinated parts directed toward the air regardless of the length of the hydrogenated unit. Analysis of the direction of the molecular dipole moment with respect to the main axis indicates that the minimum effective dipole moment is achieved for a molecule oriented at an angle of about 35 degrees to the surface normal. The film thickness was evaluated from the relative intensity measurements. The results suggest that the F12Hn molecules are tilted to the interface in the vicinity of collapse, which is in accordance with the liquid character of their monolayers.


Subject(s)
Alkanes/chemistry , Fluorocarbons/chemistry , Surface-Active Agents/chemistry , Air , Phase Transition , Surface Properties , Surface Tension , Water/chemistry
16.
Langmuir ; 20(3): 928-33, 2004 Feb 03.
Article in English | MEDLINE | ID: mdl-15773125

ABSTRACT

Mixed Langmuir monolayers of miltefosine (hexadecylphosphocholine) and cholesterol have been investigated by recording surface pressure-area (pi-A) isotherms at different subphase pHs (2, 6, and 10) and temperatures (10, 20, 25, and 30 degrees C). The change of both pH and temperature within the investigated range does not modify significantly the behavior of mixed films. The most pronounced effect involves condensation of the miltefosine monolayer by cholesterol, which diminishes in the following order: pH 6 > pH 2 > pH 10. The analyses of pi-A and compressibility modulus dependencies indicate the existence of interactions in the investigated system; at pH 2 and 6, the strongest were found to occur for the mixed film of miltefosine molar fraction (XM) between 0.6 and 0.7 (mean value, 0.66). Such a composition corresponds to the stable complex formation wherein 2 miltefosine molecules and 1 molecule of cholesterol are strongly bound together, mainly by attractive hydrophobic forces between their apolar tails. However, at pH 10 the highest stability occurs for mixtures containing a smaller proportion of miltefosine (XM = 0.5), which means that on alkaline subphases the ability to condense the miltefosine monolayer by cholesterol is less efficient as it requires a higher proportion of cholesterol (1:1 as compared to 1:2 at pH 2 and 6) to attain the maximum stability of the mixed film. The attractive forces between miltefosine and cholesterol are also weaker at pH 10 due to a greater solvatation of the miltefosine polar group. A similar trend is observed on increasing subphase temperature, when monolayers are more expanded.


Subject(s)
Cholesterol/chemistry , Phosphorylcholine/analogs & derivatives , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Models, Chemical , Phosphorylcholine/chemistry , Surface Tension , Thermodynamics
17.
J Colloid Interface Sci ; 265(2): 380-5, 2003 Sep 15.
Article in English | MEDLINE | ID: mdl-12962672

ABSTRACT

Dipalmitoyl phosphatidyl glycerol (DPPG) as Langmuir monolayers at the air/water interface was investigated by means of surface pressure measurements in addition to Brewster angle microscopy (BAM) during film compression/expansion. A characteristic phase transition region appeared in the course of surface pressure-area (pi-A) isotherms for monolayers spread on alkaline water or buffer subphase, while on neutral or acidic water the plateau region was absent. This phase transition region was attributed to the ionization of DPPG monolayer. It has been postulated that the ionization of the phosphatidyl glycerol group leads to its increased solvation, which probably provokes both a change in the orientation of the polar group and its deeper penetration into bulk phase. Film compression along the transition region provokes the dehydration of polar groups and subsequent change of their conformation, thus causing the DPPG molecules to emerge up to the interface. Quantitative Brewster angle microscopy (BAM) measurements revealed that along the liquid-expanded to liquid-condensed phase transition the thickness of the ionized DPPG monolayer increases by 4.2 A as a result of the conformational changes of the ionized polar groups, which tend to emerge from the bulk subphase up to the surface.


Subject(s)
Phosphatidylglycerols/chemistry , Air , Hydrogen-Ion Concentration , Ions , Kinetics , Membranes, Artificial , Microscopy , Molecular Conformation , Phospholipids , Pressure , Surface Properties , Temperature , Time Factors , Water/chemistry
18.
J Colloid Interface Sci ; 249(2): 388-97, 2002 May 15.
Article in English | MEDLINE | ID: mdl-16290613

ABSTRACT

Dipalmitoyl phosphatidic acid (DPPA) monolayers at the air-water interface were studied from surface pressure (Pi)-area (A) isotherms and at the microscopic level with Brewster angle microscopy (BAM) under different conditions of temperature, pH, and ionic strength. BAM images were recorded simultaneously with Pi-A isotherms during the monolayer compression-expansion cycles. DPPA monolayers show a structural polymorphism from the liquid-expanded (LE)-liquid-condensed (LC) transition region at lower surface pressures toward liquid-condensed and solid (S) structures at higher surface pressures. An increase in temperature, pH, or ionic strength provokes an expansion in the monolayer structure. The results obtained from the Pi-A measurements are confirmed by the monolayer topography and relative reflectivity. The measurements of relative reflectivity upon monolayer compression showed an increase in relative monolayer thickness of 1.25 and 3.3 times throughout the full monolayer compression from the liquid-expanded to the liquid-condensed and solid states, respectively.


Subject(s)
Palmitates/chemistry , Phosphatidic Acids/chemistry , Osmolar Concentration , Surface Properties
19.
Adv Colloid Interface Sci ; 91(2): 221-93, 2001 May 25.
Article in English | MEDLINE | ID: mdl-11392357

ABSTRACT

Recent developments in characterising Langmuir monolayers of a variety of film-forming materials and employing several physicochemical techniques are reviewed. The extension of the LB method to non-amphiphilic substances, especially macromolecular systems, has increased the need of a thorough understanding of Langmuir film properties, which requires characterising techniques that provide complementary information. Since there is vast literature in the subject, only selected examples are given of results that illustrate the potential of the techniques discussed.


Subject(s)
Chemistry, Physical/methods , Fatty Acids/chemistry , Liposomes/chemistry , Phospholipids/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...