Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 154(3): 034501, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33499616

ABSTRACT

It has been recently conjectured that bridge functions remain nearly invariant along phase diagram lines of constant excess entropy for the broad class of R-simple liquids. To test this hypothesis, the bridge functions of Yukawa systems are computed outside the correlation void with the Ornstein-Zernike inversion method employing structural input from ultra-accurate molecular dynamics simulations and inside the correlation void with the cavity distribution method employing structural input from ultra-long specially designed molecular dynamics simulations featuring a tagged particle pair. Yukawa bridge functions are revealed to be isomorph invariant to a very high degree. The observed invariance is not exact, however, since isomorphic deviations exceed the overall uncertainties.

2.
J Chem Phys ; 151(20): 204502, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31779315

ABSTRACT

Molecular dynamics simulations have been carried out along four Lennard-Jones (LJ) fluid isomorphs close to the freezing line, covering a temperature, T, in the range of 0.8-350 and a number density, ρ, in the range of 1.1-3.0 in LJ units. Analysis of the transport coefficients is via the Green-Kubo time correlation function method. The radial distribution function, percolation threshold connectivity distance, self-diffusion coefficient, and shear viscosity are shown to be invariant along an isomorph to a very good approximation when scaled with Rosenfeld's macroscopic units, although there are some small departures for T ≃ 1 and lower temperatures. The thermal conductivity is shown for the first time also to be isomorph invariant. In contrast, the Einstein and moment-based frequencies, and especially the bulk viscosity, ηb, show poor isomorphic collapse at low T but not surprisingly tend to an "inverse power" potential limiting value in the high T limit. In the case of the bulk viscosity, the significant departures from invariance arise from oscillations in the pressure autocorrelation function at intermediate times, which scale for inverse power potential systems but not for the LJ case, at least in part, as the pressure and bulk elastic moduli are not isomorph invariant.

3.
Phys Rev Lett ; 112(9): 098301, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24655283

ABSTRACT

Liquids composed of small-molecule monohydroxy alcohols are demonstrated to display rheological behavior typical for oligomeric chains. This observation was made possible by rheological experiments in which more than seven decades in frequency and more than five decades on the mechanical modulus scale are covered. The singly hydrogen-bonded monohydroxy alcohols were chosen because they display significant, but surprisingly poorly understood effects of intermolecular association. Based on the present shear study, one can apply theoretical concepts of polymer science to understand the anomalous physical behavior of a wide range of hydrogen-bonded liquids.


Subject(s)
Heptanol/chemistry , Hexanols/chemistry , Elastic Modulus , Hydrogen Bonding , Models, Molecular , Rheology/methods , Viscosity
4.
J Chem Phys ; 137(14): 144502, 2012 Oct 14.
Article in English | MEDLINE | ID: mdl-23061850

ABSTRACT

Binary solutions of 2-ethyl-1-hexanol (2E1H) with 2-ethyl-1-hexyl bromide (2E1Br) are investigated by means of dielectric, shear mechanical, near-infrared, and solvation spectroscopy as well as dielectrically monitored physical aging. For moderately diluted 2E1H the slow Debye-like process, which dominates the dielectric spectra of the neat monohydroxy alcohol, separates significantly from the α-relaxation. For example, the separation in equimolar mixtures amounts to four decades in frequency. This situation of highly resolved processes allows one to demonstrate unambiguously that physical aging is governed by the α-process, but even under these ideal conditions the Debye process remains undetectable in shear mechanical experiments. Furthermore, the solvation experiments show that under constant charge conditions the microscopic polarization fluctuations take place on the time scale of the structural process. The hydrogen-bond populations monitored via near-infrared spectroscopy indicate the presence of a critical alcohol concentration, x(c) ≈ 0.5-0.6, thereby confirming the dielectric data. In the pure bromide a slow dielectric process of reduced intensity is present in addition to the main relaxation. This is taken as a sign of intermolecular cooperativity probably mediated via halogen bonds.


Subject(s)
Hexanols/chemistry , Hydrocarbons, Brominated/chemistry , Hydrogen Bonding , Shear Strength , Solvents/chemistry , Time Factors , Vibration , Viscosity
5.
Phys Rev Lett ; 86(7): 1271-4, 2001 Feb 12.
Article in English | MEDLINE | ID: mdl-11178061

ABSTRACT

Dielectric relaxation measurements on supercooled triphenyl phosphite show that time-temperature superposition (TTS) is obeyed for the primary relaxation process at low temperatures. Measurements on other molecular liquids close to the calorimetric glass transition indicate that TTS is linked to an omega(-1/2) high-frequency decay of the loss, while the loss peak width is nonuniversal.

6.
Article in English | MEDLINE | ID: mdl-11969720

ABSTRACT

Recent findings on displacements in the surroundings of isotropic flow events in viscous liquids [Phys. Rev. E 59, 2458 (1999)] are generalized to the anisotropic case. Also, it is shown that a flow event is characterized by a dimensionless number reflecting the degree of anisotropy.

7.
Science ; 269(5228): 1284-5, 1995 Sep 01.
Article in English | MEDLINE | ID: mdl-17732114
SELECTION OF CITATIONS
SEARCH DETAIL
...