Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Biochim Biophys Acta ; 1864(2): 233-41, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26621385

ABSTRACT

Arthropods include chelicerates, crustaceans, and insects that all have open circulation systems and thus require different properties of their coagulation system than vertebrates. Although the clotting reaction in the chelicerate horseshoe crab (Family: Limulidae) has been described in details, the overall protein composition of the resulting clot has not been analyzed for any of the chelicerates. The largest class among the chelicerates is the arachnids, which includes spiders, ticks, mites, and scorpions. Here, we use a mass spectrometry-based approach to characterize the spider hemolymph clot proteome from the Brazilian whiteknee tarantula, Acanthoscurria geniculata. We focused on the insoluble part of the clot and demonstrated high concentrations of proteins homologous to the hemostasis-related and multimerization-prone von Willebrand factor. These proteins, which include hemolectins and vitellogenin homologous, were previously identified as essential components of the hemolymph clot in crustaceans and insects. Their presence in the spider hemolymph clot suggests that the origin of these proteins' function in coagulation predates the split between chelicerates and mandibulata. The clot proteome reveals that the major proteinaceous component is the oxygen-transporting and phenoloxidase-displaying abundant hemolymph protein hemocyanin, suggesting that this protein also plays a role in clot biology. Furthermore, quantification of the peptidome after coagulation revealed the simultaneous activation of both the innate immune system and the coagulation system. In general, many of the identified clot-proteins are related to the innate immune system, and our results support the previously suggested crosstalk between immunity and coagulation in arthropods.


Subject(s)
Hemocyanins/biosynthesis , Hemolymph/metabolism , Proteome/genetics , von Willebrand Factor/biosynthesis , Animals , Blood Coagulation/genetics , Brazil , Hemocyanins/genetics , Spiders/genetics , Spiders/metabolism , von Willebrand Factor/genetics
2.
Proteome Sci ; 13: 31, 2015.
Article in English | MEDLINE | ID: mdl-26628894

ABSTRACT

BACKGROUND: It has been discussed if the adverse health effect associated with the ingestion of trans fatty acids correlates with the food source, as the composition of the isomers varies in different foods. We have investigated the hepatocellular responses to the predominant trans fatty acid isomers in industrially produced partially hydrogenated vegetable oils (elaidic acid) and products of ruminant origin (trans-vaccenic acid). RESULTS: The responses of HepG2-SF cells exposed to 100 µM fatty acids during 7 days were examined. Elaidic acid decreased the cellular proliferation rate while trans-vaccenic acid had no effect. Analysis of cellular triacylglycerol fractions showed, that both trans fatty acids were metabolized by HepG2-SF cells, although elaidic acid, to a higher degree than trans-vaccenic, accumulated in the triacylglycerol fraction. Proteome analysis revealed that the overlap of differentially regulated proteins only contained four proteins, suggesting that the two trans fatty acid isomers affect the cells in different ways. The data are available via ProteomeXchange with identifier PXD000760. CONCLUSIONS: Our investigations revealed that the hepatocellular response to the two most abundant dietary positional C18:1 trans fatty acid isomers differ substantially. In addition, the results suggest that trans-vaccenic acid does not affect cholesterol metabolism adversely compared to elaidic acid.

3.
Data Brief ; 3: 137-42, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26217734

ABSTRACT

The data presented here is related to the research article entitled "Characterization of the gila monster (Heloderma suspectum suspectum) venom proteome" by Sanggaard et al. in Journal of Proteomics [1]. The gila monster venom was collected, analyzed by 2D-gel electrophoresis and after Coomassie-Brilliant Blue staining the major spots were excised, subjected to in-gel trypsin digestion, and analyzed by LC-MS/MS. Subsequently, the venom proteins were identified based on de novo sequencing and homology searching. The mass spectrometry proteomics data have been deposited to the ProteomeXchange (dataset identifier PXD0001343), and in the present article we present an overview of the identified proteins. Protein identification failed for three of the selected spots, with the method described above. Instead, an iterative process, based on de novo sequencing, was employed.

4.
J Proteomics ; 117: 1-11, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25603280

ABSTRACT

The archetypical venomous lizard species are the helodermatids, the gila monsters (Heloderma suspectum) and the beaded lizards (Heloderma horridum). In the present study, the gila monster venom proteome was characterized using 2D-gel electrophoresis and tandem mass spectrometry-based de novo peptide sequencing followed by protein identification based on sequence homology. A total of 39 different proteins were identified out of the 58 selected spots that represent the major constituents of venom. Of these proteins, 19 have not previously been identified in helodermatid venom. The data showed that helodermatid venom is complex and that this complexity is caused by genetic isoforms and post-translational modifications including proteolytic processing. In addition, the venom proteome analysis revealed that the major constituents of the gila monster venom are kallikrein-like serine proteinases (EC 3.4.21) and phospholipase A2 (type III) enzymes (EC 3.1.1.4). A neuroendocrine convertase 1 homolog that most likely converts the proforms of the previously identified bioactive exendins into the mature and active forms was identified suggesting that these peptide toxins are secreted as proforms that are activated by proteolytic cleavage following secretion as opposed to being activated intracellularly. The presented global protein identification-analysis provides the first overview of the helodermatid venom composition. BIOLOGICAL SIGNIFICANCE: The helodermatid lizards are the classical venomous lizards, and the pharmacological potential of the venom from these species has been known for years; best illustrated by the identification of exendin-4, which is now used in the treatment of type 2 diabetes. Despite the potential, no global analyses of the protein components in the venom exist. A hindrance is the lack of a genome sequence because it prevents protein identification using a conventional approach where MS data are searched against predicted protein sequences based on the genome sequence. However, in the recent years the development of software tools for de novo sequencing and homology searches have improved significantly facilitating the first global analysis of the major protein components of helodermatid venom presented in this study. We have used a 2D-gel approach and determined the protein components in the 58 major spots resulting in the identification of 39 unique proteins. Of these, 19 have not previously been identified in helodermatid venom. The analysis provides results with impact on our understanding of the function and evolution of venom proteins, and serves as a basis for further unraveling of the pharmaceutical potential of the venom components.


Subject(s)
Lizards/metabolism , Proteome/metabolism , Proteomics , Venoms/metabolism , Animals , Proteome/analysis , Venoms/chemistry
5.
J Proteome Res ; 13(12): 5635-47, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25250876

ABSTRACT

The aim of this study was the development of a quantitative assay that could support future studies of a panel of acute phase proteins (APPs) in the horse. The assay was based on a quantification concatamer (QconCAT) coupled to selected reaction monitoring methodology. Thirty-two peptides, corresponding to 13 putative or confirmed APPs for the Equus caballus (equine) species were selected for the design of a QconCAT construct. The gene encoding the QconCAT was synthesized and expressed as an isotope-labeled chimaeric protein in Escherichia coli. The QconCAT tryptic peptides were analyzed on a triple-quadrupole instrument, and the quantotypic properties were assessed in equine serum, wound tissue, and wound interstitial fluid. Reasonable quantotypic performance was found for 12, 14, and 14 peptides in serum, wound tissue, and interstitial fluid, respectively. Seven proteins were quantified in absolute terms in serum collected from a horse before and after the onset of a systemic inflammatory condition, and the observed protein concentrations were in close agreement with previous data. We conclude, that this QconCAT is applicable for concurrent quantitative analysis of multiple APPs in serum and may also support future studies of these proteins in other types of tissues and body fluids from the horse.


Subject(s)
Acute-Phase Proteins/metabolism , Amino Acid Sequence , Animals , Calibration , Horses , Molecular Sequence Data , Peptide Fragments/chemistry , Reference Standards , Reproducibility of Results , Tandem Mass Spectrometry/standards , Wound Healing
6.
Hum Reprod ; 29(11): 2421-30, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25164020

ABSTRACT

STUDY QUESTION: Which non-declared proteins (proteins not listed on the composition list of the product data sheet) are present in unconditioned commercial embryo culture media? SUMMARY ANSWER: A total of 110 non-declared proteins were identified in unconditioned media and between 6 and 8 of these were quantifiable and therefore represent the majority of the total protein in the media samples. WHAT IS KNOWN ALREADY: There are no data in the literature on what non-declared proteins are present in unconditioned (fresh media in which no embryos have been cultured) commercial embryo media. STUDY DESIGN, SIZE, DURATION: The following eight commercial embryo culture media were included in this study: G-1 PLUS and G-2 PLUS G5 Series from Vitrolife, Sydney IVF Cleavage Medium and Sydney IVF Blastocyst Medium from Cook Medical and EmbryoAssist, BlastAssist, Sequential Cleav and Sequential Blast from ORIGIO. Two batches were analyzed from each of the Sydney IVF media and one batch from each of the other media. All embryo culture media are supplemented by the manufacturers with purified human serum albumin (HSA 5 mg/ml). The purified HSA (HSA-solution from Vitrolife) and the recombinant human albumin supplement (G-MM from Vitrolife) were also analyzed. PARTICIPANTS/MATERIALS, SETTING, METHODS: For protein quantification, media samples were in-solution digested with trypsin and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). For in-depth protein identification, media were albumin depleted, dialyzed and concentrated before sodium dodecyl sulfate polyacrylamide gel electrophoresis. The gel was cut into 14 slices followed by in-gel trypsin digestion, and analysis by LC-MS/MS. Proteins were further investigated using gene ontology (GO) terms analysis. MAIN RESULTS AND THE ROLE OF CHANCE: Using advanced mass spectrometry and high confidence criteria for accepting proteins (P < 0.01), a total of 110 proteins other than HSA were identified. The average HSA content was found to be 94% (92-97%) of total protein. Other individual proteins accounted for up to 4.7% of the total protein. Analysis of purified HSA strongly suggests that these non-declared proteins are introduced to the media when the albumin is added. GO analysis showed that many of these proteins have roles in defence pathways, for example 18 were associated with the innate immune response and 17 with inflammatory responses. Eight proteins have been reported previously as secreted embryo proteins. LIMITATIONS, REASONS FOR CAUTION: For six of the commercial embryo culture media only one batch was analyzed. However, this does not affect the overall conclusions. WIDER IMPLICATIONS OF THE FINDINGS: The results showed that the HSA added to IVF media contained many other proteins and that the amount varies from batch to batch. These variations in protein profiles are problematic when attempting to identify proteins derived from the embryos. Therefore, when studying the embryo secretome and analyzing conditioned media with the aim of finding potential biomarkers that can distinguish normal and abnormal embryo development, it is important that the medium used in the experimental and control groups is from the same batch. Furthermore, the proteins present in unconditioned media could potentially influence embryonic development, gestation age, birthweight and perhaps have subsequent effects on health of the offspring. STUDY FUNDING/COMPETING INTERESTS: The study was supported by the Danish Agency for Science, Technology and Innovation. Research at the Fertility Clinic, Aarhus University Hospital is supported by an unrestricted grant from Merck Sharp & Dohme Corp and Ferring. The authors declare no conflicts of interest.


Subject(s)
Culture Media/chemistry , Embryo Culture Techniques/methods , Proteins/analysis , Humans , Proteomics , Tandem Mass Spectrometry
7.
Biochemistry ; 53(23): 3851-7, 2014 Jun 17.
Article in English | MEDLINE | ID: mdl-24846539

ABSTRACT

Human HtrA1 (high-temperature requirement protein A1) belongs to a conserved family of serine proteases involved in protein quality control and cell fate. The homotrimeric ubiquitously expressed protease has chymotrypsin-like specificity and primarily targets hydrophobic stretches in selected or misfolded substrate proteins. In addition, the enzyme is capable of exerting autolytic activity by removing the N-terminal insulin-like growth factor binding protein (IGFBP)/Kazal-like tandem motif without affecting the protease activity. In this study, we have addressed the mechanism governing the autolytic activity and find that it depends on the integrity of the disulfide bonds in the N-terminal IGFBP/Kazal-like domain. The specificity of the autolytic cleavage reveals a strong preference for cysteine in the P1 position of HtrA1, explaining the lack of autolysis prior to disulfide reduction. Significantly, the disulfides were reduced by thioredoxin, suggesting that autolysis of HtrA1 in vivo is linked to the endogenous redox balance and that the N-terminal domain acts as a redox-sensing switch.


Subject(s)
Cysteine/metabolism , Models, Molecular , Protein Unfolding , Proteolysis , Serine Endopeptidases/metabolism , Biocatalysis/drug effects , Cysteine/chemistry , Cystine/chemistry , Cystine/metabolism , Databases, Protein , Dithiothreitol/pharmacology , Enzyme Stability/drug effects , Glutathione/chemistry , Glutathione/metabolism , High-Temperature Requirement A Serine Peptidase 1 , Humans , Osmolar Concentration , Oxidation-Reduction , Oxidative Stress , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Structure, Tertiary , Proteolysis/drug effects , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Reducing Agents/chemistry , Reducing Agents/metabolism , Reducing Agents/pharmacology , Serine Endopeptidases/chemistry , Serine Endopeptidases/genetics , Thioredoxins/chemistry , Thioredoxins/metabolism
8.
J Proteome Res ; 13(11): 4659-67, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-24846694

ABSTRACT

Fuchs' endothelial corneal dystrophy (FECD) is a major corneal disorder affecting the innermost part of the cornea, leading to visual impairment. As the morphological changes in FECD are mainly observed in the extracellular matrix of the Descemet's membrane/endothelial layer, we determined the protein profiles of diseased and control tissues using two relative quantitation MS methods. The first quantitation method, based on the areas of the extracted ion chromatograms, quantified the 51 and 48 most abundant proteins of the Descemet's membrane/endothelial layer in patient and control tissues, respectively, of which 10 were significantly regulated. The results indicated that the level of type VIII collagen was unaltered even though the protein previously has been shown to be implicated in familial early-onset forms of the disease. Using the second relative quantitation method, iTRAQ, we identified 22 differentially regulated proteins, many of which are extracellular proteins known to be involved in proper assembly of the basement membrane in other tissues. In total, 26 differentially regulated proteins were identified, of which 6 proteins were regulated in both methods. These results support that the morphological changes observed in FECD are caused in part by an aberrant assembly of the extracellular matrix within the Descemet's membrane/endothelial layer.


Subject(s)
Descemet Membrane/metabolism , Extracellular Matrix Proteins/metabolism , Fuchs' Endothelial Dystrophy/metabolism , Gene Expression Regulation/physiology , Proteomics/methods , Amino Acids/analysis , Chromatography, Liquid , Female , Humans , Male , Tandem Mass Spectrometry/methods
9.
Nat Commun ; 5: 3765, 2014 May 06.
Article in English | MEDLINE | ID: mdl-24801114

ABSTRACT

Spiders are ecologically important predators with complex venom and extraordinarily tough silk that enables capture of large prey. Here we present the assembled genome of the social velvet spider and a draft assembly of the tarantula genome that represent two major taxonomic groups of spiders. The spider genomes are large with short exons and long introns, reminiscent of mammalian genomes. Phylogenetic analyses place spiders and ticks as sister groups supporting polyphyly of the Acari. Complex sets of venom and silk genes/proteins are identified. We find that venom genes evolved by sequential duplication, and that the toxic effect of venom is most likely activated by proteases present in the venom. The set of silk genes reveals a highly dynamic gene evolution, new types of silk genes and proteins, and a novel use of aciniform silk. These insights create new opportunities for pharmacological applications of venom and biomaterial applications of silk.


Subject(s)
Genome/genetics , Insect Proteins/genetics , Silk/genetics , Spider Venoms/genetics , Spiders/genetics , Animals , Base Sequence , Evolution, Molecular , Peptide Hydrolases/genetics , Phylogeny , Sequence Analysis, DNA
10.
J Biol Chem ; 289(10): 6526-6534, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24443567

ABSTRACT

Coagulation factor XIII (FXIII) is a transglutaminase with a well defined role in the final stages of blood coagulation. Active FXIII (FXIIIa) catalyzes the formation of ε-(γ-glutamyl)lysine isopeptide bonds between specific Gln and Lys residues. The primary physiological outcome of this catalytic activity is stabilization of the fibrin clot during coagulation. The stabilization is achieved through the introduction of cross-links between fibrin monomers and through cross-linking of proteins with anti-fibrinolytic activity to fibrin. FXIIIa additionally cross-links several proteins with other functionalities to the clot. Cross-linking of proteins to the clot is generally believed to modify clot characteristics such as proteolytic susceptibility and hereby affect the outcome of tissue damage. In the present study, we use a proteomic approach in combination with transglutaminase-specific labeling to identify FXIIIa plasma protein substrates and their reactive residues. The results revealed a total of 147 FXIIIa substrates, of which 132 have not previously been described. We confirm that 48 of the FXIIIa substrates were indeed incorporated into the insoluble fibrin clot during the coagulation of plasma. The identified substrates are involved in, among other activities, complement activation, coagulation, inflammatory and immune responses, and extracellular matrix organization.


Subject(s)
Blood Coagulation/physiology , Blood Proteins/metabolism , Factor XIIIa/metabolism , Proteome/metabolism , Humans , Substrate Specificity
11.
Proteomics Clin Appl ; 8(3-4): 168-77, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24302499

ABSTRACT

PURPOSE: In this study, we investigated whether the phenotypic difference observed between two lattice corneal dystrophy type 1 (LCD type 1) cases caused by either a single A546D substitution or an A546D/P551Q double substitution in TGFBIp (transforming growth factor beta induced protein) can be ascribed to (i) a difference in the proteomes of corneal amyloid deposits, (ii) altered proteolysis of TGFBIp, or (iii) structural changes of TGFBIp introduced by the P551Q amino acid substitution. EXPERIMENTAL DESIGN: Amyloid deposits were isolated from the corneas of two siblings with LCD type 1 resulting from A546D/P551Q mutations in the TGFBI gene using laser capture microdissection and subsequently analyzed by LC-MS/MS. Proteolytic processing of TGFBIp was addressed by counting peptide spectra. Lastly, to study the possible effect of the P551Q substitution, recombinant FAS1-4 domain variants were subjected to in vitro stability assays. RESULTS: The amyloid proteomes and TGFBIp processing of the two A546D/P551Q LCD type 1 cases were similar to each other as well as to the A546D amyloid proteome previously reported by us. The stability assays revealed a minor destabilization of the FAS1-4 domain upon the addition of the P551Q mutation, moreover, it resulted in different accessibility to tryptic cleavage sites between the A546D and A546D/P551Q mutant FAS1-4 domain variants. CONCLUSION AND CLINICAL RELEVANCE: The difference in A546D and A546D/P551Q LCD type 1 phenotypes cannot be ascribed to altered corneal amyloid composition or altered in vivo proteolytic processing of TGFBIp. Instead, a small difference in thermodynamic stability introduced by the P551Q mutation most likely causes structural changes of TGFBIp. The MS proteomics data have been deposited to the ProteomeXchange with identifier PXD000307 (http://proteomecentral.proteomexchange.org/dataset/PXD000307).


Subject(s)
Cornea/pathology , Corneal Dystrophies, Hereditary/genetics , Extracellular Matrix Proteins/genetics , Transforming Growth Factor beta/genetics , Amino Acid Substitution/genetics , Amyloid/metabolism , Chromatography, Liquid , Cornea/metabolism , Corneal Dystrophies, Hereditary/metabolism , Corneal Dystrophies, Hereditary/pathology , Extracellular Matrix Proteins/biosynthesis , Extracellular Matrix Proteins/chemistry , Humans , Laser Capture Microdissection , Mutation , Proteolysis , Tandem Mass Spectrometry , Transforming Growth Factor beta/chemistry
12.
Proteomics ; 14(2-3): 230-40, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24293220

ABSTRACT

Legume symbiosis with rhizobia results in the formation of a specialized organ, the root nodule, where atmospheric dinitrogen is reduced to ammonia. In Lotus japonicus (Lotus), several genes involved in nodule development or nodule function have been defined using biochemistry, genetic approaches, and high-throughput transcriptomics. We have employed proteomics to further understand nodule development. Two developmental stages representing nodules prior to nitrogen fixation (white) and mature nitrogen fixing nodules (red) were compared with roots. In addition, the proteome of a spontaneous nodule formation mutant (snf1) was determined. From nodules and roots, 780 and 790 protein spots from 2D gels were identified and approximately 45% of the corresponding unique gene accessions were common. Including a previous proteomics set from Lotus pod and seed, the common gene accessions were decreased to 7%. Interestingly, an indication of more pronounced PTMs in nodules than in roots was determined. Between the two nodule developmental stages, higher levels of pathogen-related 10 proteins, HSPs, and proteins involved in redox processes were found in white nodules, suggesting a higher stress level at this developmental stage. In contrast, protein spots corresponding to nodulins such as leghemoglobin, asparagine synthetase, sucrose synthase, and glutamine synthetase were prevalent in red nodules. The distinct biochemical state of nodules was further highlighted by the conspicuous presence of several nitrilases, ascorbate metabolic enzymes, and putative rhizobial effectors.


Subject(s)
Lotus/physiology , Plant Proteins/analysis , Plant Proteins/metabolism , Plant Roots/physiology , Root Nodules, Plant/physiology , Gene Expression Regulation, Plant , Lotus/chemistry , Lotus/genetics , Lotus/microbiology , Mutation , Nitrogen Fixation , Plant Proteins/genetics , Plant Roots/chemistry , Plant Roots/genetics , Plant Roots/microbiology , Proteome/analysis , Proteome/genetics , Proteome/metabolism , Proteomics , Root Nodules, Plant/chemistry , Root Nodules, Plant/genetics , Root Nodules, Plant/microbiology , Signal Transduction , Symbiosis
13.
J Biol Chem ; 288(32): 23407-20, 2013 Aug 09.
Article in English | MEDLINE | ID: mdl-23814060

ABSTRACT

Collectins are pattern recognition molecules of the innate immune system showing binding to carbohydrate structures on microorganisms in a calcium-dependent manner. Recently, three novel collectins, collectin liver 1 (CL-L1), collectin kidney 1 (CL-K1 and CL-11), and collectin placenta 1 (CL-P1), were discovered. The roles of these three collectins remain largely unknown. Here, we present a time-resolved immunofluorometric assay for quantification of CL-L1. The concentration of CL-L1 in donor plasma (n = 210) was distributed log-normally with a median value of 3.0 µg/ml (range 1.5-5.5 µg/ml). We observed on average 30% higher concentrations of CL-L1 in plasma as compared with serum. Size analysis by gel-permeation chromatography showed CL-L1 in serum to elute as large 700-800-kDa complexes and smaller 200-300-kDa complexes. CL-L1 showed specific binding to mannose-TSK beads in a Ca(2+)-dependent manner. This binding could be inhibited by mannose and glucose, but not galactose, indicating that CL-L1 binds via its carbohydrate-recognition domain and has ligand specificity similar to that of mannan-binding lectin. Western blot analysis of CL-L1 showed the presence of several oligomeric forms in serum. Ontogeny studies showed CL-L1 to be present at birth at near adult levels. CL-L1 levels exhibit low variation in healthy adults over a 1-year period. During acute-phase responses, the CL-L1 levels display only minor variations. In serum, CL-L1 was found in complexes with mannan-binding lectin-associated serine proteases, suggesting a role in the lectin pathway of complement activation. The presented data establish a basis for future studies on the biological role of CL-L1.


Subject(s)
Collectins/blood , Protein Multimerization , Serum/metabolism , Adult , Complement Pathway, Mannose-Binding Lectin/physiology , Female , Fluorescent Antibody Technique , Follow-Up Studies , HEK293 Cells , Hexoses/blood , Humans , Male
14.
Proteomics ; 13(16): 2500-11, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23749747

ABSTRACT

There are an estimated 285 million people with visual impairment worldwide, of whom 39 million are blind. The pathogenesis of many eye diseases remains poorly understood. The human eye is currently an emerging proteome that may provide key insight into the biological pathways of disease. We review proteomic investigations of the human eye and present a catalogue of 4842 nonredundant proteins identified in human eye tissues and biofluids to date. We highlight the need to identify new biomarkers for eye diseases using proteomics. Recent advances in proteomics do now allow the identification of hundreds to thousands of proteins in tissues and fluids, characterization of various PTMs and simultaneous quantification of multiple proteins. To facilitate proteomic studies of the eye, the Human Eye Proteome Project (HEPP) was organized in September 2012. The HEPP is one of the most recent components of the Biology/Disease-driven Human Proteome Project (B/D-HPP) whose overarching goal is to support the broad application of state-of-the-art measurements of proteins and proteomes by life scientists studying the molecular mechanisms of biological processes and human disease. The large repertoire of investigative proteomic tools has great potential to transform vision science and enhance understanding of physiology and disease processes that affect sight.


Subject(s)
Databases, Protein , Eye Proteins/metabolism , Eye/metabolism , Proteome/metabolism , Biomedical Research , Eye/chemistry , Eye Proteins/analysis , Humans , Proteome/analysis , Proteomics
15.
J Proteomics ; 88: 41-6, 2013 Aug 02.
Article in English | MEDLINE | ID: mdl-23220569

ABSTRACT

In large-scale proteomics studies there is a temptation, after months of experimental work, to plug resulting data into a convenient-if poorly implemented-set of tools, which may neither do the data justice nor help answer the scientific question. In this paper we have captured key concerns, including arguments for community-wide open source software development and "big data" compatible solutions for the future. For the meantime, we have laid out ten top tips for data processing. With these at hand, a first large-scale proteomics analysis hopefully becomes less daunting to navigate. However there is clearly a real need for robust tools, standard operating procedures and general acceptance of best practises. Thus we submit to the proteomics community a call for a community-wide open set of proteomics analysis challenges--PROTEINCHALLENGE--that directly target and compare data analysis workflows, with the aim of setting a community-driven gold standard for data handling, reporting and sharing.


Subject(s)
Computational Biology/methods , Proteomics/methods , Software Design
16.
Mol Cell Proteomics ; 11(11): 1306-19, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22891002

ABSTRACT

The Venus flytrap (Dionaea muscipula) is one of the most well-known carnivorous plants because of its unique ability to capture small animals, usually insects or spiders, through a unique snap-trapping mechanism. The animals are subsequently killed and digested so that the plants can assimilate nutrients, as they grow in mineral-deficient soils. We deep sequenced the cDNA from Dionaea traps to obtain transcript libraries, which were used in the mass spectrometry-based identification of the proteins secreted during digestion. The identified proteins consisted of peroxidases, nucleases, phosphatases, phospholipases, a glucanase, chitinases, and proteolytic enzymes, including four cysteine proteases, two aspartic proteases, and a serine carboxypeptidase. The majority of the most abundant proteins were categorized as pathogenesis-related proteins, suggesting that the plant's digestive system evolved from defense-related processes. This in-depth characterization of a highly specialized secreted fluid from a carnivorous plant provides new information about the plant's prey digestion mechanism and the evolutionary processes driving its defense pathways and nutrient acquisition.


Subject(s)
Droseraceae/metabolism , Insecta/metabolism , Plant Exudates/metabolism , Plant Proteins/metabolism , Amino Acid Sequence , Animals , DNA, Complementary/genetics , Droseraceae/enzymology , Droseraceae/genetics , High-Throughput Nucleotide Sequencing , Molecular Sequence Data , Plant Leaves/metabolism , Plant Proteins/chemistry , Proteolysis , Sequence Alignment , Transcriptome
17.
Proteomics ; 12(18): 2792-6, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22833312

ABSTRACT

Data processing and analysis of proteomics data are challenging and time consuming. In this paper, we present MS Data Miner (MDM) (http://sourceforge.net/p/msdataminer), a freely available web-based software solution aimed at minimizing the time required for the analysis, validation, data comparison, and presentation of data files generated in MS software, including Mascot (Matrix Science), Mascot Distiller (Matrix Science), and ProteinPilot (AB Sciex). The program was developed to significantly decrease the time required to process large proteomic data sets for publication. This open sourced system includes a spectra validation system and an automatic screenshot generation tool for Mascot-assigned spectra. In addition, a Gene Ontology term analysis function and a tool for generating comparative Excel data reports are included. We illustrate the benefits of MDM during a proteomics study comprised of more than 200 LC-MS/MS analyses recorded on an AB Sciex TripleTOF 5600, identifying more than 3000 unique proteins and 3.5 million peptides.


Subject(s)
Mass Spectrometry/methods , Proteins/chemistry , Software , Animals , Humans , Internet , Peptides/chemistry , Proteomics/methods
18.
J Proteome Res ; 11(8): 4231-9, 2012 Aug 03.
Article in English | MEDLINE | ID: mdl-22698189

ABSTRACT

Diseases of the cornea are common and refer to conditions like infections, injuries and genetic defects. Morphologically, many corneal diseases affect only certain layers of the cornea and separate analysis of the individual layers is therefore of interest to explore the basic molecular mechanisms involved in corneal health and disease. In this study, the three main layers including, the epithelium, stroma and endothelium of healthy human corneas were isolated. Prior to analysis by LC-MS/MS the proteins from the different layers were either (i) separated by SDS-PAGE followed by in-gel trypsinization, (ii) in-solution digested without prior protein separation or, (iii) in-solution digested followed by cation exchange chromatography. A total of 3250 unique Swiss-Prot annotated proteins were identified in human corneas, 2737 in the epithelium, 1679 in the stroma, and 880 in the endothelial layer. Of these, 1787 proteins have not previously been identified in the human cornea by mass spectrometry. In total, 771 proteins were quantified, 157 based on in-solution digestion and 770 based on SDS-PAGE separation followed by in-gel digestion of excised gel pieces. Protein analysis showed that many of the identified proteins are plasma proteins involved in defense responses.


Subject(s)
Corneal Stroma/metabolism , Endothelium, Corneal/metabolism , Epithelium, Corneal/metabolism , Eye Proteins/metabolism , Proteome/metabolism , Aged , Aged, 80 and over , Blood Proteins/isolation & purification , Blood Proteins/metabolism , Chromatography, Ion Exchange , Collagen/isolation & purification , Collagen/metabolism , Cornea/cytology , Cornea/metabolism , Eye Proteins/isolation & purification , Female , Humans , Keratins/isolation & purification , Keratins/metabolism , Male , Molecular Sequence Annotation , Proteome/isolation & purification , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...