Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38673266

ABSTRACT

This paper proposes molecular and supramolecular concepts for potential application in perovskite solar cells. New air-stable symmetrical imine, with thiadiazole moieties PPL2: (5E,6E)-N2,N5-bis(4-(diphenylamino)benzylidene)-1,3,4-thiadiazole-2,5-diamine), as a hole-transporting material was synthesised in a single-step reaction, starting with commercially available and relatively inexpensive reagents, resulting in a reduction in the cost of the final product compared to Spiro-OMeTAD. Moreover, camphorsulfonic acid (CSA) in both enantiomeric forms was used to change the HOMO-LUMO levels and electric properties of the investigated imine-forming complexes. Electric, optical, thermal, and structural studies of the imine and its complexes with CSA were carried out to characterise the new material. Imine and imine/CSA complexes were also characterised in depth by the proton Nuclear Magnetic Resonance 1H NMR method. The position of nitrogen in the thidiazole ring influences the basicity of donor centres, which results in protonation in the imine bond. Simple devices of ITO/imine (with or without CSA(-) or CSA(+))/Ag/ITO architecture were constructed, and a thermographic camera was used to find the defects in the created devices. Electric behaviour was also studied to demonstrate conductivity properties under the forward current. Finally, the electrical properties of imine and its protonated form with CSA were compared with Spiro-OMeTAD. In general, the analysis of thermal images showed a very similar response of the samples to the applied potential in terms of the homogeneity of the formed organic layer. The TGA analysis showed that the investigated imine exhibits good thermal stability in air and argon atmospheres.

2.
Materials (Basel) ; 14(8)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924588

ABSTRACT

The crystal structure was determined for the first time for 4-[(di-p-tolyl-amino)benzylidene]-(5-pyridin-4-yl-[1,3,4]thiadiazol-2-yl)-imine (trans-PPL9) by X-ray diffraction. The imine crystallized in the monoclinic P21/n space group with a = 18.9567(7) Å, b = 6.18597(17) Å, c = 22.5897(7) Å, and ß = 114.009(4)°. Intermolecular interactions in the PPL9 crystal were only weak C-H⋯N hydrogen bonds investigated using the Hirshfeld surface. The electronic and geometric structure of the imine were investigated by the density functional theory and the time-dependent density-functional theory. The properties of the imine in neutral and protonated form with camforosulphonic acid (CSA) were investigated using cyclic voltammetry, UV-vis and 1H NMR spectroscopy. Theoretical and experimental studies showed that for the 1:1 molar ratio the protonation occured on nitrogen in pyridine in the PPL9 structure, as an effect of Brönsted acid-base interactions. Thermographic camera was used to defined defects in constructed simple devices with ITO/PPL9 (or PPL9:CSA)/Ag/ITO architecture. In conclusion, a thermally stable imine was synthesized in crystalline form and by CSA doping, a modification of absorption spectra together with reduction of overheating process was observed, suggesting its potential application in optoelectronics.

3.
Materials (Basel) ; 13(11)2020 May 27.
Article in English | MEDLINE | ID: mdl-32471055

ABSTRACT

Planar perovskite solar cells were fabricated on F-doped SnO2 (FTO) coated glass substrates, with 4,4'-((1E,1'E)-((1,2,4-thiadiazole-3,5-diyl)bis(azaneylylidene))bis(methaneylylidene))bis(N,N-di-p-tolylaniline) (bTAThDaz) as hole transport material. This imine was synthesized in one step reaction, starting from commercially available and relatively inexpensive reagents. Electrochemical, optical, electrical, thermal and structural studies including thermal images and current-voltage measurements of the full solar cell devices characterize the imine in details. HOMO-LUMO of bTAThDaz were investigated by cyclic voltammetry (CV) and energy-resolved electrochemical impedance spectroscopy (ER-EIS) and were found at -5.19 eV and -2.52 eV (CV) and at -5.5 eV and -2.3 eV (ER-EIS). The imine exhibited 5% weight loss at 156 °C. The electrical behavior and photovoltaic performance of the perovskite solar cell was examined for FTO/TiO2/perovskite/bTAThDaz/Ag device architecture. Constructed devices exhibited good time and air stability together with quite small effect of hysteresis. The observed solar conversion efficiency was 14.4%.

4.
RSC Adv ; 10(73): 44958-44972, 2020 Dec 17.
Article in English | MEDLINE | ID: mdl-35516284

ABSTRACT

A new unsymmetrical imine with four thiophene rings was synthesized in a one-step reaction, starting from the commercially available and relatively inexpensive reagents. The obtained imine in the form of thin films exhibited photoluminescence properties in the 1.8-2.4 eV energy range and a photoluminescence lifetime of about 0.3 ns. The HOMO and LUMO levels of the imine determined by cyclic voltammetry were at about -5.19 eV and -3.05 eV, respectively. The density functional theory was applied to calculate the geometric and electronic structure of the imine. The UV-Vis spectra showed that the absorption range of the imine overlaps with that of PC70BM, and the absorption peak at the maximum of the imine at 424 nm is located between the two maxima at 404 nm and 461 nm of the fullerene derivative. The electron acceptor and donor activity of the imine was tested in the solar cell architecture: glass/ITO/PEDOT:PSS/active layer/In/Al. The best photovoltaic parameters, with very good reproducibility for each 8 pixels in the cell, were found for the active layer based on ternary mixture PTB7:PC70BM:imine at a weight ratio 8 : 13 : 1, with the power conversion efficiency of about 4%. The external quantum efficiency of devices with the imine was found to be about 40% at 3.3 eV. The thermal imaging together with the recorded current response at increasing potential showed that the presence of imine in the composition has a beneficial impact in terms of current flow stability at temperatures above 200 °C, compared to two component layers with the same imine as an additive.

5.
Materials (Basel) ; 12(24)2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31847154

ABSTRACT

In this paper, four new aromatic imines containing at least one thiazole-based heterocycle were analyzed in detail by UV-Vis spectroscopy, taking into consideration their chemical structures and interactions with PTB7, a known polymeric electron donor widely used in bulk heterojunction organic solar cells. It is demonstrated that the absorption spectra of the investigated active compositions can be modified not only by changing the chemical structure of imine, but also via formulations with PTB7. For all investigated imines and PTB7:imine compositions, calibration curves were obtained in order to find the optimum concentration in the composition with PTB7 for expansion and optimization of absorption spectra. All imines and PTB7:imine compositions were investigated in 1,2-dichlorobenzene by UV-Vis spectroscopy in various concentrations, monitoring the changes in the π-π* and n-π* transitions. With increasing imine concentrations, we did not observe changes in absorption maxima, while with increasing imine concentrations, a hypochromic effect was observed. Finally, we could conclude that all investigated compositions exhibited wide absorptions of up to 800 nm and isosbestic points in the range of 440-540 nm, confirming changes in the macromolecular organization of the tested compounds. The theoretical calculations of their vibration spectra (FTIR) and LUMO-HOMO levels by Density Functional Theory (DFT) methods are also provided. Finally, IR thermal images were measured for organic devices based on imines and the imine:PTB7 composite.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 136 Pt B: 405-15, 2015 Feb 05.
Article in English | MEDLINE | ID: mdl-25315872

ABSTRACT

3-Chloro-7-azaindole (3Cl7AI) is the carrier ligand in a new anticancer platinum(II) agent cis-[PtCl2(3Cl7AI)2]. In this work 3Cl7AI has been studied by a single crystal X-ray diffraction, infrared and Raman spectroscopy and density functional calculations. The compound crystallizes in the monoclinic system, space group P21/n, with a=12.3438(3), b=3.85964(11), c=14.4698(4)Å, ß=100.739(2)°, V=677.31(3)Å(3) and Z=4. In the crystal, a pair of 3Cl7AI molecules forms a centrosymmetric dimer linked by the moderately strong dual N-H⋯N hydrogen bonds. The nitrogen atom in the pyrrole ring acts as the proton donor, while the nitrogen atom in the pyridine ring is the proton acceptor. The FT-IR and FT-Raman spectra (3500-60 cm(-1)) have been recorded. The theoretical studies on the molecular structures and vibrational spectra of the monomeric and dimeric forms of 3Cl7AI and its N-deuterated derivative were performed using the B3LYP method with 6-311++G(d,p) basis set. The theoretically predicted Raman spectrum for the dimer shows very good agreement with experiment. Detailed vibrational assignments for the two isotopomers have been made on the basis of the calculated potential energy distributions (PEDs). The dual N-H⋯N hydrogen bonds in 3Cl7AI dimer are characterized by a very broad and complicated structure of the absorption band between 3300 and 2500 cm(-1), which is caused by multiple Fermi resonances between the N-H stretching vibration and various combinations bands.


Subject(s)
Dimerization , Indoles/chemistry , Models, Molecular , Quantum Theory , Vibration , Crystallography, X-Ray , Hydrogen Bonding , Molecular Conformation , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...