Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys Chem ; 136(1): 23-31, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18495323

ABSTRACT

Molecular dynamics (MD) simulation is used to investigate the solubility behavior of cryoprotective (CP) solvents, such as DMSO, ethylene glycol (EG) and glycerol (GL), in pure water and in the presence of a lipid membrane. The MD study is focused on an equilibration timescale required for mixing large CP aggregates with aqueous and aqueous/lipid environments. The MD analysis demonstrates that DMSO mixes rapidly with water, so that all solute molecules are uniformly distributed in the equilibrium aqueous solution. Our investigation of the microstructure of binary EG/water and GL/water systems reveals that, despite the miscibility of both CP solvents with water, they are not ideally mixed in aqueous solutions at the molecular level. The MD simulations show that the mixing dynamics of the large CP cluster and surrounding water is found to be strongly dependent on nature of hydrophilic and hydrophobic interactions acting between cryoprotectant molecules. In particular, a spatial hydrogen-bond network formed between CP molecules plays an important role in the mixing dynamics between CP agents and water. A further analysis on the mixing behavior of the CP solvents with pure water and with aqueous solutions at a lipid membrane interface shows that, due to strong binding of the CP molecules to membrane surface, the equilibration process in the lipid environment becomes very slow, at least of the order of microseconds. The MD results are discussed in the context of the better understanding on the composition of the aqueous mixtures of the EG and GL solvents. Knowledge of the microstructure and the dynamics of these systems helps to develop better cryopreservation protocols and to propose more optimal cooling/warming regimes for cellular cryosolutions.


Subject(s)
Membrane Lipids/chemistry , Membranes, Artificial , Molecular Structure
2.
J Fluoresc ; 16(6): 817-23, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16977488

ABSTRACT

The influence of low molecular weight cryoprotectants (CPs) such as glycerol (GL), 1,2-propanediol (PD) and dimethylsulfoxide (DMSO) on the structure of rat liver microsomal membranes on the stages of equilibration and upon freezing up to -196 degrees C was studied using a multiparametric fluorescent probe of flavonol nature. It was estimated that the studied CPs have individual concentration ranges defining low amplitude of their action on biomembranes. An exceeding of these ranges strongly increases the violation of membrane native structure already at the stage of incubation with CPs, strengthening it during the freezing procedure. According to the perturbation effect on microsomal membranes the studied CPs can be arranged in a sequence: DMSO>PD>GL.


Subject(s)
Cryoprotective Agents/pharmacology , Flavones/chemistry , Fluorescent Dyes/chemistry , Intracellular Membranes/drug effects , Intracellular Membranes/ultrastructure , Microsomes, Liver/ultrastructure , Animals , Dimethyl Sulfoxide/pharmacology , Flavonols , Freezing , Glycerol/pharmacology , Molecular Weight , Propylene Glycol/pharmacology , Rats , Spectrometry, Fluorescence
3.
J Fluoresc ; 16(1): 47-52, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16397827

ABSTRACT

The present study was undertaken to evaluate the sensitivity of newly synthesized squaraine dye 1 to the changes in lipid bilayer physical properties and compared it with the well-known dye 2. Partitioning of the dye 1 into lipid bilayer was found to be followed by significant increase of its fluorescence intensity and red-shift of emission maximum, while intensity of the dye 2 fluorescence increased only slightly on going from aqueous to lipidic environment. This suggests that dye 1 is more sensitive to the changes in membrane properties as compared to dye 2. Partition coefficients of the dye 1 have been determined for the model membranes composed of zwitterionic phospholipid phosphatidylcholine (PC) and its mixtures with positively charged detergent cetyltrimethylammonium bromide (CTAB), anionic phospholipid cardiolipin (CL), and sterol (Chol). The spectral responses of the dye 1 in different liposome media proved to correlate with the increase of bilayer polarity induced by Chol and CL or its decrease caused by CTAB. It was concluded that dye 1 can be used as fluorescent probe for examining membrane-related processes.


Subject(s)
Cyclobutanes/chemistry , Fluorescent Dyes/chemistry , Membranes/chemistry , Phenols/chemistry , Animals , Cardiolipins/chemistry , Cattle , Cetrimonium , Cetrimonium Compounds/chemistry , Chickens , Cholesterol/chemistry , Female , Lipid Bilayers/chemistry , Liposomes/chemistry , Models, Chemical , Molecular Structure , Phosphatidylcholines/chemistry , Phospholipids/chemistry , Sensitivity and Specificity , Spectrometry, Fluorescence , Temperature , Water/chemistry
4.
Anal Chim Acta ; 570(2): 214-23, 2006 Jun 16.
Article in English | MEDLINE | ID: mdl-17723402

ABSTRACT

A series of ring-substituted squaraines absorbing and emitting in the red and NIR spectral region was synthesized and their spectral and photophysical properties (quantum yields, fluorescence lifetimes) and photostabilities were measured and compared to Cy5, a commonly used fluorescent label. The absorption maxima in aqueous media were found to be between 628 and 667 nm and the emission maxima are between 642 and 685 nm. Squaraine dyes exhibit high extinction coefficients (163,000-265,000 M(-1) cm(-1)) and lower quantum yields (2-7%) in aqueous buffer but high quantum yields (up to 45%) and long fluorescence lifetimes (up to 3.3 ns) in presence of BSA. Dicyanomethylene- and thio-substituted squaraines exhibit an additional absorption around 400 nm with extinction coefficients between 21,500 and 44,500 M(-1) cm(-1). These dyes are excitable not only with red but also with blue diode lasers or light emitting diodes. Due to the favourable spectral and photophysical properties these dyes can be used as fluorescent probes and labels for intensity- and fluorescence lifetime-based biomedical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...