Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(14)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39066021

ABSTRACT

This paper is dedicated to the research of phenomena noticed during tests of biodegradable carrageenan-based force and pressure sensors. Peculiar voltage characteristics were noticed during the impact tests. Therefore, the sensors' responses to impact were researched more thoroughly, defining time-dependent sensor output signals from calibrated energy impact. The research was performed using experimental methods when a free-falling steel ball impacted the sensor material to create relatively definable impact energy. The sensor's output signal, which is analogue voltage, was registered using an oscilloscope and transmitted to the PC for further analysis. The obtained results showed a very interesting outcome, where the sensor, which was intended to be piezoresistive, demonstrated a combination of behaviour typical for galvanic cells and piezoelectric material. It provides a stable DC output that is sensitive to the applied statical pressure, and in case of a sudden impact, like a hit, it demonstrates piezoelectric behaviour with some particular effects, which are described in the paper as proton transfer in the sensor-sensitive material. Such phenomena and sensor design are a matter of further development and research.

2.
Sensors (Basel) ; 24(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38894203

ABSTRACT

Autonomous systems are becoming increasingly relevant in our everyday life. The transportation field is no exception and the smart cities concept raises new tasks and challenges for the development of autonomous systems development which has been progressively researched in literature. One of the main challenges is communication between different traffic objects. For instance, a mobile robot system can work as a standalone autonomous system reacting to a static environment and avoiding obstacles to reach a target. Nevertheless, more intensive communication and decision making is needed when additional dynamic objects and other autonomous systems are present in the same working environment. Traffic is a complicated environment consisting of vehicles, pedestrians, and various infrastructure elements. To apply autonomous systems in this kind of environment it is important to integrate object localization and to guarantee functional and trustworthy communication between each element. To achieve this, various sensors, communication standards, and equipment are integrated via the application of sensor fusion and AI machine learning methods. In this work review of vehicular communication systems is presented. The main focus is the researched sensors, communication standards, devices, machine learning methods, and vehicular-related data to find existing gaps for future vehicular communication system development. In the end, discussion and conclusions are presented.

3.
Ultramicroscopy ; 259: 113937, 2024 May.
Article in English | MEDLINE | ID: mdl-38359633

ABSTRACT

Scanning electrochemical microscopy (SECM) is a scanning probe microscope with an ultramicroelectrode (UME) as a probe. The technique is advantageous in the characterization of the electrochemical properties of surfaces. However, the limitations, such as slow imaging and many functions depending on the user, only allow us to use some of the possibilities. Therefore, we applied visual recognition and machine learning to detect micro-objects from the image and determine their electrochemical activity. The reconstruction of the image from several approach curves allows it to scan faster and detect active areas of the sample. Therefore, the scanning time and presence of the user is diminished. An automated scanning electrochemical microscope with visual recognition has been developed using commercially available modules, relatively low-cost components, design, software solutions proven in other fields, and an original control and data fusion algorithm.

4.
Sensors (Basel) ; 24(2)2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38276377

ABSTRACT

This article presents research on biodegradable stretch sensors produced using biological material. This sensor uses a piezoresistive effect to indicate stretch, which can be used for force measurement. In this work, an attempt was made to develop the composition of a sensitive material and to design a sensor. The biodegradable base was made from a κ-carrageenan compound mixed with Fe2O3 microparticles and glycerol. The influence of the weight fraction and iron oxide microparticles on the tensile strength and Young's modulus was experimentally investigated. Tensile test specimens consisted of 10-25% iron oxide microparticles of various sizes. The results showed that increasing the mass fraction of the reinforcement improved the Young's modulus compared to the pure sample and decreased the elongation percentage. The GF of the developed films varies from 0.67 to 10.47 depending on composition. In this paper, it was shown that the incorporation of appropriate amounts of Fe2O3 microparticles into κ-carrageenan can achieve dramatic improvements in mechanical properties, resulting in elongation of up to 10%. The developed sensors were experimentally tested, and their sensitivity, stability, and range were determined. Finally, conclusions were drawn on the results obtained.


Subject(s)
Ferric Compounds , Mechanical Phenomena , Carrageenan , Tensile Strength , Elastic Modulus
5.
Sensors (Basel) ; 23(23)2023 Nov 26.
Article in English | MEDLINE | ID: mdl-38067796

ABSTRACT

The development of low-cost biodegradable pressure or force sensors based on a carrageenan and iron (III) oxide mix is a promising way to foster the spread of green technologies in sensing applications. The proposed materials are inexpensive and abundant and are available in large quantities in nature. This paper presents the development and experimental study of carrageenan and iron (III)-oxide-based piezoresistive sensor prototypes and provides their main characteristics. The results show that glycerol is required to ensure the elasticity of the material and preserve the material from environmental impact. The composition of the carrageenan-based material containing 1.8% Fe2O3 and 18% glycerol is suitable for measuring the load in the range from 0 N to 500 N with a sensitivity of 0.355 kΩ/N when the active surface area of the sensor is 100 mm2. Developed sensors in the form of flexible film have square resistance dependence to the force/pressure, and due to the soft original material, they face the hysteresis effect and some plastic deformation effect in the initial use stages. This paper contains extensive reference analysis and found a firm background for a new sensor request. The research covers the electric and mechanical properties of the developed sensor and possible future applications.

6.
Materials (Basel) ; 16(19)2023 Sep 24.
Article in English | MEDLINE | ID: mdl-37834515

ABSTRACT

In this paper, we provide a systematic review of atomic force microscopy (AFM), a fast-developing technique that embraces scanners, controllers, and cantilevers. The main objectives of this review are to analyze the available technical solutions of AFM, including the limitations and problems. The main questions the review addresses are the problems of working in contact, noncontact, and tapping AFM modes. We do not include applications of AFM but rather the design of different parts and operation modes. Since the main part of AFM is the cantilever, we focused on its operation and design. Information from scientific articles published over the last 5 years is provided. Many articles in this period disclose minor amendments in the mechanical system but suggest innovative AFM control and imaging algorithms. Some of them are based on artificial intelligence. During operation, control of cantilever dynamic characteristics can be achieved by magnetic field, electrostatic, or aerodynamic forces.

7.
Micromachines (Basel) ; 13(8)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-36014178

ABSTRACT

The implementation of electrostatic microactuators is one of the most popular technical solutions in the field of micropositioning due to their versatility and variety of possible operation modes and methods. Nevertheless, such uncertainty in existing possibilities creates the problem of choosing suitable methods. This paper provides an effort to classify electrostatic actuators and create a system in the variety of existing devices. Here is overviewed and classified a wide spectrum of electrostatic actuators developed in the last 5 years, including modeling of different designs, and their application in various devices. The paper provides examples of possible implementations, conclusions, and an extensive list of references.

8.
Sensors (Basel) ; 22(10)2022 May 21.
Article in English | MEDLINE | ID: mdl-35632319

ABSTRACT

Recent industrial robotics covers a broad part of the manufacturing spectrum and other human everyday life applications; the performance of these devices has become increasingly important. Positioning accuracy and repeatability, as well as operating speed, are essential in any industrial robotics application. Robot positioning errors are complex due to the extensive combination of their sources and cannot be compensated for using conventional methods. Some robot positioning errors can be compensated for only using machine learning (ML) procedures. Reinforced machine learning increases the robot's positioning accuracy and expands its implementation capabilities. The provided methodology presents an easy and focused approach for industrial in situ robot position adjustment in real-time during production setup or readjustment cases. The scientific value of this approach is a methodology using an ML procedure without huge external datasets for the procedure and extensive computing facilities. This paper presents a deep q-learning algorithm applied to improve the positioning accuracy of an articulated KUKA youBot robot during operation. A significant improvement of the positioning accuracy was achieved approximately after 260 iterations in the online mode and initial simulation of the ML procedure.


Subject(s)
Robotics , Algorithms , Humans , Machine Learning , Robotics/methods
9.
Sensors (Basel) ; 22(3)2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35161940

ABSTRACT

Vibration energy harvesting is receiving significant interest due to the possibility of using extra power in various machines and constructions. This paper presents an energy-harvesting system that has a structure similar to that of a linear generator but uses permanent magnets and magnetorheological fluid insets. The application of a standard vehicle example with low frequencies and amplitudes of the excitations was used for the optimization and experimental runs. The optimization for low excitation amplitudes shows that the best magnetic field change along the slider is obtained using differentially orientated radial magnets of 5 mm in width. This configuration was used for the experimental research, resulting in 1.2-3.28 W of power generated in the coils. The power conditioning system in the experimental research was replaced by loading resistors. Nevertheless, the initial idea of energy harvesting and a damping effect was confirmed by the circuit voltage output.

10.
Sensors (Basel) ; 21(15)2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34372477

ABSTRACT

Human falls pose a serious threat to the person's health, especially for the elderly and disease-impacted people. Early detection of involuntary human gait change can indicate a forthcoming fall. Therefore, human body fall warning can help avoid falls and their caused injuries for the skeleton and joints. A simple and easy-to-use fall detection system based on gait analysis can be very helpful, especially if sensors of this system are implemented inside the shoes without causing a sensible discomfort for the user. We created a methodology for the fall prediction using three specially designed Velostat®-based wearable feet sensors installed in the shoe lining. Measured pressure distribution of the feet allows the analysis of the gait by evaluating the main parameters: stepping rhythm, size of the step, weight distribution between heel and foot, and timing of the gait phases. The proposed method was evaluated by recording normal gait and simulated abnormal gait of subjects. The obtained results show the efficiency of the proposed method: the accuracy of abnormal gait detection reached up to 94%. In this way, it becomes possible to predict the fall in the early stage or avoid gait discoordination and warn the subject or helping companion person.


Subject(s)
Accidental Falls , Wearable Electronic Devices , Accidental Falls/prevention & control , Aged , Foot , Gait , Humans , Shoes
11.
Polymers (Basel) ; 12(12)2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33287414

ABSTRACT

The progress observed in 'soft robotics' brought some promising research in flexible tactile, pressure and force sensors, which can be based on polymeric composite materials. Therefore, in this paper, we intend to evaluate the characteristics of a force-sensitive material-polyethylene-carbon composite (Velostat®) by implementing this material into the design of the flexible tactile sensor. We have explored several possibilities to measure the electrical signal and assessed the mechanical and time-dependent properties of this tactile sensor. The response of the sensor was evaluated by performing tests in static, long-term load and cyclic modes. Experimental results of loading cycle measurements revealed the hysteresis and nonlinear properties of the sensor. The transverse resolution of the sensor was defined by measuring the response of the sensor at different distances from the loaded point. Obtained dependencies of the sensor's sensitivity, hysteresis, response time, transversal resolution and deformation on applied compressive force promise a practical possibility to use the polyethylene-carbon composite as a sensitive material for sensors with a single electrode pair or its matrix. The results received from experimental research have defined the area of the possible implementation of the sensor based on a composite material-Velostat®.

12.
Sensors (Basel) ; 20(3)2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31973140

ABSTRACT

Automated emotion recognition (AEE) is an important issue in various fields of activities which use human emotional reactions as a signal for marketing, technical equipment, or human-robot interaction. This paper analyzes scientific research and technical papers for sensor use analysis, among various methods implemented or researched. This paper covers a few classes of sensors, using contactless methods as well as contact and skin-penetrating electrodes for human emotion detection and the measurement of their intensity. The results of the analysis performed in this paper present applicable methods for each type of emotion and their intensity and propose their classification. The classification of emotion sensors is presented to reveal area of application and expected outcomes from each method, as well as their limitations. This paper should be relevant for researchers using human emotion evaluation and analysis, when there is a need to choose a proper method for their purposes or to find alternative decisions. Based on the analyzed human emotion recognition sensors and methods, we developed some practical applications for humanizing the Internet of Things (IoT) and affective computing systems.


Subject(s)
Biosensing Techniques/methods , Emotions/physiology , Electrodes , Humans , Perception/physiology
13.
Sensors (Basel) ; 18(8)2018 Aug 16.
Article in English | MEDLINE | ID: mdl-30115868

ABSTRACT

Increasing the imaging rate of atomic force microscopy (AFM) without impairing of the imaging quality is a challenging task, since the increase in the scanning speed leads to a number of artifacts related to the limited mechanical bandwidth of the AFM components. One of these artifacts is the loss of contact between the probe tip and the sample. We propose to apply an additional nonlinear force on the upper surface of a cantilever, which will help to keep the tip and surface in contact. In practice, this force can be produced by the precisely regulated airflow. Such an improvement affects the AFM system dynamics, which were evaluated using a mathematical model that is presented in this paper. The model defines the relationships between the additional nonlinear force, the pressure of the applied air stream, and the initial air gap between the upper surface of the cantilever and the end of the air duct. It was found that the nonlinear force created by the stream of compressed air (aerodynamic force) prevents the contact loss caused by the high scanning speed or the higher surface roughness, thus maintaining stable contact between the probe and the surface. This improvement allows us to effectively increase the scanning speed by at least 10 times using a soft (spring constant of 0.2 N/m) cantilever by applying the air pressure of 40 Pa. If a stiff cantilever (spring constant of 40 N/m) is used, the potential of vertical deviation improvement is twice is large. This method is suitable for use with different types of AFM sensors and it can be implemented practically without essential changes in AFM sensor design.

SELECTION OF CITATIONS
SEARCH DETAIL
...