Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; : 133849, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004246

ABSTRACT

Hereditary ataxias are one of the «anticipation diseases¼ types. Spinocerebral ataxia type 2 occurs when the number of CAG repeats in the coding region of the ATXN2 gene exceeds 34 or more. In healthy people, the CAG repeat region in the ATXN2 gene usually consists of 22-23 CAG trinucleotides. Mutations that increase the length of CAG repeats can cause severe neurodegenerative and neuromuscular disorders known as trinucleotide repeat expansion diseases. The mechanisms causing such diseases are associated with non-canonical configurations that can be formed in the CAG repeat region during replication, transcription or repair. This makes it relevant to study the zones of open states that arise in the region of CAG repeats under torque. The purpose of this work is to study, using mathematical modeling, zones of open states in the region of CAG repeats of the ATXN2 gene, caused by torque. It has been established that the torque effect on the 1st exon of the ATXN2 gene, in addition to the formation of open states in the promoter region, can lead to the formation of additional various sizes open states zones in the CAG repeats region. Moreover, the frequency of additional large zones genesis increases with increasing number of CAG repeats. The inverse of this frequency correlates with the dependence of the disease onset average age on the CAG repeats length. The obtained results will allow us to get closer to understanding the genetic mechanisms that cause trinucleotide repeat diseases.

2.
Int J Mol Sci ; 25(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38612825

ABSTRACT

The purpose of this Special Issue is to demonstrate the current state of research in the field of biophysics in the Russian Federation [...].


Subject(s)
Biophysics , Humans , Russia
3.
J Biomol Struct Dyn ; : 1-9, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38102872

ABSTRACT

The studies were carried out by the mathematical modeling of DNA mechanical deformations. Numerical calculations done for the interferon alpha 17 gene, which consists of 980 base pairs. It has been established that the genesis and dynamics of open states in the DNA molecule depends on the magnitude of the external influence (torque) and on the viscosity of the environment. In addition, it is shown that the dynamics of open states zones can have a jump-like character with a small change in the magnitude of the torque. When torque is applied to all 980 base pairs of the gene, the following effect is observed: an increase in the viscosity of the medium leads to an increase in the value of the torque necessary for the occurrence of OS and DNA unwinding, i.e. viscosity plays an important stabilizing role in DNA dynamics. Under the influence of a localized torque on different (by the content of A-T and G-C pairs and location) regions of the interferon alpha 17 gene, it was found that the magnitude of the external torque necessary for the occurrence of open states at all calculated values of viscosity depends on the nucleotide composition. The dependence of the torque magnitude required for the open states occurrence on viscosity is observed when the torque is applied to areas close to the gene boundaries. At the same time, the significance of the end effect, which weakens DNA, decreased with increasing viscosity of the medium.Communicated by Ramaswamy H. Sarma.

4.
Int J Mol Sci ; 24(24)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38139232

ABSTRACT

A unique method for synthesizing a surface modifier for metallic hydrogen permeable membranes based on non-classic bimetallic pentagonally structured Pd-Pt nanoparticles was developed. It was found that nanoparticles had unique hollow structures. This significantly reduced the cost of their production due to the economical use of metal. According to the results of electrochemical studies, a synthesized bimetallic Pd-Pt/Pd-Ag modifier showed excellent catalytic activity (up to 60.72 mA cm-2), long-term stability, and resistance to COads poisoning in the alkaline oxidation reaction of methanol. The membrane with the pentagonally structured Pd-Pt/Pd-Ag modifier showed the highest hydrogen permeation flux density, up to 27.3 mmol s-1 m-2. The obtained hydrogen flux density was two times higher than that for membranes with a classic Pdblack/Pd-Ag modifier and an order of magnitude higher than that for an unmodified membrane. Since the rate of transcrystalline hydrogen transfer through a membrane increased, while the speed of transfer through defects remained unchanged, a one and a half times rise in selectivity of the developed Pd-Pt/Pd-Ag membranes was recorded, and it amounted to 3514. The achieved results were due to both the synergistic effect of the combination of Pd and Pt metals in the modifier composition and the large number of available catalytically active centers, which were present as a result of non-classic morphology with high-index facets. The specific faceting, defect structure, and unusual properties provide great opportunities for the application of nanoparticles in the areas of membrane reactors, electrocatalysis, and the petrochemical and hydrogen industries.


Subject(s)
Nanoparticles , Steam , Hydrogen/chemistry , Platinum/chemistry , Catalysis , Nanoparticles/chemistry
5.
Front Biosci (Landmark Ed) ; 28(10): 252, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37919083

ABSTRACT

BACKGROUND: The production of reactive oxygen species (ROS) in animals and cells often results from exposure to low-intensity factors, including magnetic fields. Much of the discussion about the initiation of oxidative stress and the role of ROS and radicals in the effects of magnetic fields has centered on radical-induced DNA damage. METHODS: The DNA concentration in the final solution was determined spectrophotometrically. Typing of the polymorphic variant rs1052133 of the 8-oxoguanin DNA glycosylase (hOGG1) gene was performed by polymerase chain reaction. An enzyme immunoassay was performed to determine the level of 8-oxyguanine in DNA. To process samples exposed to an alternating magnetic field, the authors developed a device for the automated study of biological fluids in an alternating magnetic field. The content of hydrogen peroxide in aqueous solutions of DNA was determined using the spectrophotometric method. RESULTS: It was experimentally determined that an increase in the concentration of hydrogen peroxide in an aqueous medium by 3-5 times under the action of a low-frequency magnetic field reduces the resistance of the genomic material to oxidative modification and the accumulation of 8-oxyguanine in DNA. A model is proposed for the mechanism of action of a low-frequency magnetic field on aqueous solutions of nucleic acids and proteins, which satisfies the model of a chemical oscillator for the transformations of reactive oxygen species in an aqueous medium. The model illustrates the oscillating nature of the processes occurring in an aqueous solution of DNA and makes it possible to predict changes in the concentration of hydrogen peroxide in an aqueous solution of biopolymers, depending on the frequency of the acting low-intensity magnetic field. CONCLUSIONS: The key element in the mechanisms involved in the effects of low-intensity magnetic field on living systems is the occurrence of ROS generation in the aquatic environment of chemical oscillators, in which the competition of physical and chemical processes (electron transfers, reactions of decay and addition of radicals, spin magnetically induced conversion, synthesis, and decay of the longest-lived form-hydrogen peroxide) is controlled by a magnetic field.


Subject(s)
Hydrogen Peroxide , Polymorphism, Genetic , Animals , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/chemistry , DNA Damage , DNA/genetics , DNA/chemistry
6.
Int J Mol Sci ; 24(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37569512

ABSTRACT

The influence of a single 2H/1H replacement on the frequency generation of different-size bubbles in the human interferon alpha-17 gene (IFNA17) under various energies was studied by a developed algorithm and mathematical modeling without simplifications or averaging. This new approach showed the efficacy of researching DNA bubbles and open states both when all hydrogen bonds in nitrogenous base pairs are protium and after an 2H-substitution. After a single deuterium substitution under specific energies, it was demonstrated that the non-coding region of IFNA17 had a more significant regulatory role in bubble generation in the whole gene than the promoter had. It was revealed that a single deuterium substitution for protium has an influence on the frequency generation of DNA bubbles, which also depends on their size and is always higher for the smaller bubbles under the largest number of the studied energies. Wherein, compared to the natural condition under the same critical value of energy, the bigger raises of the bubble frequency occurrence (maximums) were found for 11-30 base pair (bp) bubbles (higher by 319%), 2-4 bp bubbles (higher by 300%), and 31 bp and over ones (higher by 220%); whereas the most significant reductions of the indicators (minimums) were observed for 11-30 bp bubbles (lower by 43%) and bubbles size over 30 bp (lower by 82%). In this study, we also analyzed the impact of several circumstances on the AT/GC ratio in the formation of DNA bubbles, both under natural conditions and after a single hydrogen isotope exchange. Moreover, based on the obtained data, substantial positive and inverse correlations were revealed between the AT/GC ratio and some factors (energy values, size of DNA bubbles). So, this modeling and variant of the modified algorithm, adapted for researching DNA bubbles, can be useful to study the regulation of replication and transcription in the genes under different isotopic substitutions in the nucleobases.


Subject(s)
Hydrogen , Models, Theoretical , Humans , Deuterium , Base Pairing , DNA/chemistry
7.
Int J Mol Sci ; 24(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37175753

ABSTRACT

The crystal structure and the biological activity of a new coordination compound of magnesium ions with comenic acid, magnesium comenate, was characterized and studied. Quantitative and qualitative analysis of the compound was investigated in detail using elemental X-ray fluorescent analysis, thermal analysis, IR-Fourier spectrometry, UV spectroscopy, NMR spectroscopy, and X-ray diffraction analysis. Based on experimental analytical data, the empirical formula of magnesium comenate [Mg(HCom)2(H2O)6]·2H2O was established. This complex compound crystallizes with eight water molecules, six of which are the hydration shell of the Mg2+ cation, and two more molecules bind the [Mg(H2O)6]2+ aquacation with ionized ligand molecules by intermolecular hydrogen bonds. The packing of molecules in the crystal lattice is stabilized by a branched system of hydrogen bonds with the participation of solvate water molecules and oxygen atoms of various functional groups of ionized ligand molecules. With regard to the biological activity of magnesium comenate, a neuroprotective, stress-protective, and antioxidant effect was established in in vitro and in vivo models. In in vitro experiments, magnesium comenate protected cerebellar neurons from the toxic effects of glutamate and contributed to the preservation of neurite growth parameters under oxidative stress caused by hydrogen peroxide. In animal studies, magnesium comenate had a stress-protective and antioxidant effect in models of immobilization-cold stress. Oral administration of magnesium comenate at a dose of 2 mg/kg of animal body weight for 3 days before stress exposure and for 3 days during the stress period led to a decrease in oxidative damage and normalization of the antioxidant system of brain tissues against the background of induced stress. The obtained results indicate the advisability of further studies of magnesium comenate as a compound potentially applicable in medicine for the pharmacological correction of conditions associated with oxidative and excitotoxic damage to nerve cells.


Subject(s)
Antioxidants , Magnesium , Animals , Antioxidants/pharmacology , Antioxidants/chemistry , Magnesium/pharmacology , Ligands , Oxidative Stress , Neuroprotection
8.
Int J Mol Sci ; 25(1)2023 Dec 24.
Article in English | MEDLINE | ID: mdl-38203457

ABSTRACT

The structure, antioxidant and neuroprotective properties of lithium comenate (lithium 5-hydroxy-4-oxo-4H-pyran-2-carboxylate) were studied. Lithium comenate was obtained by reacting comenic acid (H2Com) with lithium hydroxide in an aqueous solution. The structure of lithium comenate was confirmed via thermal analysis, mass spectrometry, IR, NMR and UV spectroscopy. The crystal structure was studied in detail via X-ray diffraction. The compound crystallized in a non-centrosymmetric space group of symmetry of the orthorhombic system Pna21 in the form of a hydrate, with three water molecules entering the first coordination sphere of the cation Li+ and one molecule forming a second environment through non-valent contacts. The gross formula of the complex compound was established [Li(HCom)(H2O)3]·H2O. It has been established that lithium comenate has a pronounced neuroprotective activity under the excitotoxic effect of glutamate, increasing the survival rate of cultured rat cerebellar neurons more than two-fold. It has also been found that the pre-stress use of lithium comenate at doses of 1 and 2 mg/kg has an antioxidant effect, which is manifested in a decrease in oxidative damage to the brain tissues of mice subjected to immobilization stress. Based on the data available in the literature, we believe that the high neuroprotective and antioxidant efficacy of lithium comenate is a consequence of the mutual potentiation of the pharmacological effects of lithium and comenic acid.


Subject(s)
Antioxidants , Carboxylic Acids , Lithium , Pyrones , Radioisotopes , Animals , Mice , Rats , Lithium/pharmacology , Antioxidants/pharmacology , Glutamic Acid , Water
9.
Int J Mol Sci ; 23(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36555136

ABSTRACT

The effect of single substitutions of protium for deuterium in hydrogen bonds between pairs of nitrogenous bases on the open states occurrence probability at high critical breaking energies of these bonds has been studied. The study was carried out using numerical methods based on the angular mathematical model of DNA. The IFNA17 gene was divided into three approximately equal parts. A comparison of the open states occurrence probability in these parts of the gene was done. To improve the accuracy of the results, a special data processing algorithm was developed. The developed methods have shown their suitability for taking into account the occurrence of open states in the entire range of high critical energies. It has been established that single 2H/1H substitutions in certain nitrogenous bases can be a mechanism for maintaining the vital activity of IFNA17 under critical conditions. In general, the developed method of the mathematical modeling provide unprecedented insight into the DNA behavior under the highest critical energy range, which greatly expands scientific understanding of nucleobases interaction.


Subject(s)
Hydrogen , Models, Theoretical , Deuterium/chemistry , Hydrogen Bonding , Hydrogen/chemistry , Nucleotides , DNA/chemistry
10.
Int J Mol Sci ; 23(8)2022 Apr 17.
Article in English | MEDLINE | ID: mdl-35457247

ABSTRACT

The formation and dynamics of the open states in a double-stranded DNA molecule are largely determined by its mechanical parameters. The main one is the torque. However, the experimental study of DNA dynamics and the occurrence of open states is limited by the spatial resolution of available biophysical instruments. Therefore, in this work, on the basis of a mechanical mathematical model of DNA, calculations of the torque effect on the process of occurrence and dynamics of open states were carried out for the interferon alpha 17 gene. It was shown that torsion action leads to the occurrence of rotational movements of nitrogenous bases. This influence is nonlinear, and an increase in the amplitude of the torsion action does not lead to an automatic increase in the amplitude of rotational movements and an increase in the zones' open states. Calculations with a constant torsion moment demonstrate that open states zones are more often formed at the boundaries of the gen and in regions with a predominance of A-T pairs. It is shown, that for the occurrence of open states in the part of the gene that contains a small number of A-T pairs, a large amount of torque is required. When the torque is applied to a certain region of the gene, the probability of the formation of the open state depends on the content of A-T pairs in this region, the size of this region, and on the exposure time. For this mathematical model, open states zones can be closed when the torsion action stops. The simulation results showed that the values of the torsion moment required for the appearance of open states zones, in some cases, are close to experimentally measured (13-15 pN·nm).


Subject(s)
DNA , Models, Theoretical , DNA/genetics , Movement , Torque
11.
Nanomaterials (Basel) ; 12(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35407282

ABSTRACT

This article presents the results of the 10-fold cyclic freezing (-37.0 °C) and thawing (0.0 °C) effect on the number and size range of silver nanoparticles (AgNPs). AgNPs were obtained by the cavitation-diffusion photochemical reduction method and their sorption on the fiber surface of various suture materials, perlon, silk, and catgut, was studied. The distribution of nanoparticles of different diameters before and after the application of the cyclic freezing/thawing processes for each type of fibers studied was determined using electron microscopy. In general, the present study demonstrates the effectiveness of using the technique of 10-fold cyclic freezing. It is applicable to increase the absolute amount of AgNPs on the surface of the suture material with a simultaneous decrease in the size dispersion. It was also found that the application of the developed technique leads to the overwhelming predominance of nanoparticles with 1 to 15 nm diameter on all the investigated fibers. In addition, it was shown that after the application of the freeze/thaw method, the antibacterial activity of silk and catgut suture materials with AgNPs was significantly higher than before their treatment by cyclic freezing.

12.
Entropy (Basel) ; 23(11)2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34828144

ABSTRACT

Fluctuations in viscosity within the cell nucleus have wide limits. When a DNA molecule passes from the region of high viscosity values to the region of low values, open states, denaturation bubbles, and unweaving of DNA strands can occur. Stabilization of the molecule is provided by energy dissipation-dissipation due to interaction with the environment. Separate sections of a DNA molecule in a twisted state can experience supercoiling stress, which, among other things, is due to complex entropic effects caused by interaction with a solvent. In this work, based on the numerical solution of a mechanical mathematical model for the interferon alpha 17 gene and a fragment of the Drosophila gene, an analysis of the external environment viscosity influence on the dynamics of the DNA molecule and its stability was carried out. It has been shown that an increase in viscosity leads to a rapid stabilization of the angular vibrations of nitrogenous bases, while a decrease in viscosity changes the dynamics of DNA: the rate of change in the angular deviations of nitrogenous bases increases and the angular deformations of the DNA strands increase at each moment of time. These processes lead to DNA instability, which increases with time. Thus, the paper considers the influence of the external environment viscosity on the dissipation of the DNA nitrogenous bases' vibrational motion energy. Additionally, the study on the basis of the described model of the molecular dynamics of physiological processes at different indicators of the rheological behavior of nucleoplasm will allow a deeper understanding of the processes of nonequilibrium physics of an active substance in a living cell to be obtained.

13.
Int J Mol Sci ; 22(15)2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34360636

ABSTRACT

The sensitivity of DNA to electromagnetic radiation in different ranges differs depending on various factors. The aim of this study was to examine the molecular dynamics of DNA under the influence of external periodic influences with different frequencies. In the present paper, within the framework of a mechanical model without simplifications, we investigated the effect of various frequencies of external periodic action in the range from 1011 s-1 to 108 s-1 on the dynamics of a DNA molecule. It was shown that under the influence of an external periodic force, a DNA molecule can perform oscillatory movements with a specific frequency characteristic of this molecule, which differs from the frequency of the external influence ω. It was found that the frequency of such specific vibrations of a DNA molecule depends on the sequence of nucleotides. Using the developed mathematical model describing the rotational motion of the nitrogenous bases around the sugar-phosphate chain, it is possible to calculate the frequency and amplitude of the oscillations of an individual DNA area. Such calculations can find application in the field of molecular nanotechnology.


Subject(s)
DNA/chemistry , Models, Molecular , Movement
14.
J Wound Care ; 30(4): 312-322, 2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33856912

ABSTRACT

OBJECTIVE: To evaluate the effectiveness of a new treatment method in healing superficial infected wounds compared with surgical debridement with chlorhexidine solution. METHOD: In this animal model, two wounds were created on the back of 10 male adult rabbits. Wounds treated by Method 1 were debrided using 0.02% chlorhexidine aqueous solution and an antibiotic topical ointment. Wounds treated by Method 2 wounds were treated using a newly developed device which enabled visual monitoring of the wound as it was treated with various pharmacological solutions (including antiseptic, antiseptic oxidant and an osmotically active agent) specifically formulated for each wound healing stage. Wound area size (using digital planimetry) and time taken to clean the wound were recorded, and biopsies were taken, at the beginning of the study and at various timepoints throughout. RESULT: It was observed that both wound cleaning and wound healing were accelerated by treatment with method 2 compared with method 1 (by 43.8% and 36.7%, respectively). There were also a significantly smaller number of complications in these wounds [p=0.0044] due to the positive ratios of neutrophils and fibroblasts in the wound cavities (from the third to the fourteenth day after wound modelling). CONCLUSION: Wounds treated with the new device in method 2 had a shorter wound healing time than wounds treated with a traditional method. The automated influx-outflow of solutions removed any fragments of necrotic tissue from the wound surface. Wounds were able to be monitored without the need to remove dressings. The transparent, airtight film, which allowed for wound monitoring without the need to remove dressings, meant that suturing was not required. This resulted in no complications in the wounds treated by this new method.


Subject(s)
Anti-Infective Agents, Local/therapeutic use , Wound Healing/physiology , Wound Infection/drug therapy , Animals , Bandages , Male , Models, Animal , Rabbits
15.
Molecules ; 26(7)2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33918525

ABSTRACT

The deuterium content modification in an organism has a neuroprotective effect during the hypoxia model, affecting anxiety, memory and stress resistance. The aim of this work was to elucidate the possible mechanisms of the medium D/H composition modification on nerve cells. We studied the effect of an incubation medium with a 50 ppm deuterium content compared to a medium with 150 ppm on: (1) the activity of Wistar rats' hippocampus CA1 field neurons, (2) the level of cultured cerebellar neuron death during glucose deprivation and temperature stress, (3) mitochondrial membrane potential (MMP) and the generation of reactive oxygen species in cultures of cerebellar neurons. The results of the analysis showed that the incubation of hippocampal sections in a medium with a 50 ppm deuterium reduced the amplitude of the pop-spike. The restoration of neuron activity was observed when sections were returned to the incubation medium with a 150 ppm deuterium content. An environment with a 50 ppm deuterium did not significantly affect the level of reactive oxygen species in neuron cultures, while MMP decreased by 16-20%. In experiments with glucose deprivation and temperature stress, the medium with 50 ppm increased the death of neurons. Thus, a short exposure of nerve cells in the medium with 50 ppm deuterium acts as an additional stressful factor, which is possibly associated with the violation of the cell energy balance. The decrease in the mitochondrial membrane potential, which is known to be associated with ATP synthesis, indicates that this effect may be associated with the cell energy imbalance. The decrease in the activity of the CA1 field hippocampal neurons may reflect reversible adaptive changes in the operation of fast-reacting ion channels.


Subject(s)
Culture Media/chemistry , Deuterium/analysis , Electrophysiological Phenomena , Hydrogen/analysis , Nerve Tissue/physiopathology , Animals , CA1 Region, Hippocampal/pathology , Cell Death , Cerebellum/pathology , Male , Neurons/pathology , Rats, Wistar , Succinic Acid/analysis , Temperature
16.
Saudi J Biol Sci ; 28(3): 1826-1834, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33732068

ABSTRACT

Influence of a new protein-peptide complex on promoting skin wound healing in male BALB/c mice was studied. Protein-peptide complex, extracted from Sus scrofa immune organs, was percutaneously administered using two methods: by lecithin gel-like liquid crystals and by liquid microemulsion. On the fifth day, wound closure in mice with a linear wound model become faster in group (less 2 days comparison to other ones), which was treated with lecithin liquid crystals carrying the protein-peptide complex. This promoting healing can be caused by resorption of bioactive high-molecular compounds the animal skin. In mice with the linear wound model, the tensile strength of the scars were respectively higher both in mice, treated using lecithin liquid crystals with protein-peptide complex, and in mice, treated using microemulsion containing protein-peptide complex, by 215.4% and 161.5% relative to the animals, which did not receive bioactive substances for wound treatment. It was associated with the regeneratory effects of tissue- and species-specific protein-peptide complexes, including α-thymosin Sus scrofa (C3VVV8_PIG, m/z 3802.8) and other factors, which were described as parts of the new extracted complex. This reveals that percutaneous administration of the complex reliably activates local regenerative processes in animals.

17.
Molecules ; 27(1)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35011474

ABSTRACT

The effect of a reduced deuterium (D) content in the incubation medium on the survival of cultured neurons in vitro and under glucose deprivation was studied. In addition, we studied the effect of a decrease in the deuterium content in the rat brain on oxidative processes in the nervous tissue, its antioxidant protection, and training of rats in the T-shaped maze test under hypoxic conditions. For experiments with cultures of neurons, 7-8-day cultures of cerebellar neurons were used. Determination of the rate of neuronal death in cultures was carried out using propidium iodide. Acute hypoxia with hypercapnia was simulated in rats by placing them in sealed vessels with a capacity of 1 L. The effect on oxidative processes in brain tissues was assessed by changes in the level of free radical oxidation and malondialdehyde. The effect on the antioxidant system of the brain was assessed by the activity of catalase. The study in the T-maze was carried out in accordance with the generally accepted methodology, the skill of alternating right-sided and left-sided loops on positive reinforcement was developed. This work has shown that a decrease in the deuterium content in the incubation medium to a level of -357‱ has a neuroprotective effect, increasing the survival rate of cultured neurons under glucose deprivation. When exposed to hypoxia, a preliminary decrease in the deuterium content in the rat brain to -261‱ prevents the development of oxidative stress in their nervous tissue and preserves the learning ability of animals in the T-shaped maze test at the level of the control group. A similar protective effect during the modification of the 2H/1H internal environment of the body by the consumption of DDW can potentially be used for the prevention of pathological conditions associated with the development of oxidative stress with damage to the central nervous system.


Subject(s)
Adaptation, Biological , Deuterium/metabolism , Glucose/metabolism , Hypoxia/metabolism , Neurons/metabolism , Animals , Antioxidants/metabolism , Antioxidants/physiology , Biomarkers , Cell Death , Cells, Cultured , Culture Media , Deuterium/pharmacology , Lipid Peroxidation , Neuroglia/metabolism , Neurons/drug effects , Oxidation-Reduction , Oxidative Stress , Rats
18.
Molecules ; 25(16)2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32824686

ABSTRACT

In the present study, the effect of 2H/1H isotopic exchange in hydrogen bonds between nitrogenous base pairs on occurrence and open states zones dynamics is investigated. These processes are studied using mathematical modeling, taking into account the number of open states between base pairs. The calculations of the probability of occurrence of open states in different parts of the gene were done depending on the localization of the deuterium atom. The mathematical modeling study demonstrated significant inequality (dependent on single 2H/1H replacement in DNA) among three parts of the gene similar in length of the frequency of occurrence of the open states. In this paper, the new convenient approach of the analysis of the abnormal frequency of open states in different parts of the gene encoding interferon alpha 17 was presented, which took into account both rising and decreasing of them that allowed to make a prediction of the functional instability of the specific DNA regions. One advantage of the new algorithm is diminishing the number of both false positive and false negative results in data filtered by this approach compared to the pure fractile methods, such as deciles or quartiles.


Subject(s)
Algorithms , DNA/chemistry , Hydrogen/chemistry , Interferon-alpha/chemistry , Base Pairing , DNA/genetics , Humans , Hydrogen Bonding , Interferon-alpha/genetics , Models, Molecular , Nucleic Acid Conformation
19.
Molecules ; 24(22)2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31766268

ABSTRACT

This article presents the original descriptions of some recent physics mechanisms (based on the thermodynamic, kinetic, and quantum tunnel effects) providing stable 2H/1H isotope fractionation, leading to the accumulation of particular isotopic forms in intra- or intercellular space, including the molecular effects of deuterium interaction with 18O/17O/16O, 15N/14N, 13C/12C, and other stable biogenic isotopes. These effects were observed mainly at the organelle (mitochondria) and cell levels. A new hypothesis for heavy nonradioactive isotope fractionation in living systems via neutron effect realization is discussed. The comparative analysis of some experimental studies results revealed the following observation: "Isotopic shock" is highly probable and is observed mostly when chemical bonds form between atoms with a summary odd number of neutrons (i.e., bonds with a non-compensated neutron, which correspond to the following equation: Nn - Np = 2k + 1, where k ϵ Z, k is the integer, Z is the set of non-negative integers, Nn is number of neutrons, and Np is number of protons of each individual atom, or in pair of isotopes with a chemical bond). Data on the efficacy and metabolic pathways of the therapy also considered 2H-modified drinking and diet for some diseases, such as Alzheimer's disease, Friedreich's ataxia, mitochondrial disorders, diabetes, cerebral hypoxia, Parkinson's disease, and brain cancer.


Subject(s)
Deuterium/chemistry , Deuterium/isolation & purification , Isotopes/chemistry , Isotopes/isolation & purification , Animals , Chemical Fractionation , Deuterium/metabolism , Deuterium/therapeutic use , Humans , Isotopes/therapeutic use , Models, Chemical , Neutrons , Organelles/chemistry , Organelles/metabolism , Proton Therapy , Protons
20.
Nutrients ; 11(8)2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31443167

ABSTRACT

This review article presents data about the influence of deuterium-depleted water (DDW) on biological systems. It is known that the isotope abundances of natural and bottled waters are variable worldwide. That is why different drinking rations lead to changes of stable isotopes content in body water fluxes in human and animal organisms. Also, intracellular water isotope ratios in living systems depends on metabolic activity and food consumption. We found the 2H/1H gradient in human fluids (δ2H saliva >> δ2H blood plasma > δ2Hbreast milk), which decreases significantly during DDW intake. Moreover, DDW induces several important biological effects in organism (antioxidant, metabolic detoxification, anticancer, rejuvenation, behavior, etc.). Changing the isotope 2H/1H gradient from "2H blood plasma > δ2H visceral organs" to "δ2H blood plasma << δ2H visceral organs" via DDW drinking increases individual adaptation by isotopic shock. The other possible mechanisms of long-term adaptation is DDW influence on the growth rate of cells, enzyme activity and cellular energetics (e.g., stimulation of the mitochondrion activity). In addition, DDW reduces the number of single-stranded DNA breaks and modifies the miRNA profile.


Subject(s)
Adaptation, Physiological , Body Water/metabolism , Deuterium/metabolism , Drinking , Water/metabolism , Animals , DNA Damage , Drinking Water/metabolism , Energy Metabolism , Humans , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...