Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 79(3): 031301, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18376990

ABSTRACT

We describe the design, construction, and performance of three generations of superconducting Ioffe magnetic traps. The first two are low current traps, built from four racetrack shaped quadrupole coils and two solenoid assemblies. Coils are wet wound with multifilament NbTi superconducting wires embedded in epoxy matrices. The magnet bore diameters are 51 and 105 mm with identical trap depths of 1.0 T at their operating currents and at 4.2 K. A third trap uses a high current accelerator-type quadrupole magnet and two low current solenoids. This trap has a bore diameter of 140 mm and tested trap depth of 2.8 T. Both low current traps show signs of excessive training. The high current hybrid trap, on the other hand, exhibits good training behavior and is amenable to quench protection.

2.
J Res Natl Inst Stand Technol ; 110(4): 339-43, 2005.
Article in English | MEDLINE | ID: mdl-27308147

ABSTRACT

We report progress on an experiment to measure the neutron lifetime using magnetically trapped neutrons. Neutrons are loaded into a 1.1 T deep superconducting Ioffe-type trap by scattering 0.89 nm neutrons in isotopically pure superfluid (4)He. Neutron decays are detected in real time using the scintillation light produced in the helium by the beta-decay electrons. The measured trap lifetime at a helium temperature of 300 mK and with no ameliorative magnetic ramping is substantially shorter than the free neutron lifetime. This is attributed to the presence of neutrons with energies higher than the magnetic potential of the trap. Magnetic field ramping is implemented to eliminate these neutrons, resulting in an [Formula: see text] trap lifetime, consistent with the currently accepted value of the free neutron lifetime.

3.
J Res Natl Inst Stand Technol ; 110(4): 367-76, 2005.
Article in English | MEDLINE | ID: mdl-27308152

ABSTRACT

We compute classical trajectories of Ultracold neutrons (UCNs) in a superconducting Ioffe-type magnetic trap using a symplectic integration method. We find that the computed escape time for a particular set of initial conditions (momentum and position) does not generally stabilize as the time step parameter is reduced unless the escape time is short (less than approximately 10 s). For energy intervals where more than half of the escape times computed for UCN realizations are numerically well determined, we predict the median escape time as a function of the midpoint of the interval.

SELECTION OF CITATIONS
SEARCH DETAIL
...