Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Virus Evol ; 1(1): vev021, 2015.
Article in English | MEDLINE | ID: mdl-27774290

ABSTRACT

We have previously reported intra-segmental crossovers in Brome mosaic virus (BMV) RNAs. In this work, we studied the homologous recombination of BMV RNA in three different hosts: barley (Hordeum vulgare), Chenopodium quinoa, and Nicotiana benthamiana that were co-infected with two strains of BMV: Russian (R) and Fescue (F). Our work aimed at (1) establishing the frequency of recombination, (2) mapping the recombination hot spots, and (3) addressing host effects. The F and R nucleotide sequences differ from each other at many translationally silent nucleotide substitutions. We exploited this natural variability to track the crossover sites. Sequencing of a large number of cDNA clones revealed multiple homologous crossovers in each BMV RNA segment, in both the whole plants and protoplasts. Some recombination hot spots mapped at similar locations in different hosts, suggesting a role for viral factors, but other sites depended on the host. Our results demonstrate the chimeric ('mosaic') nature of the BMV RNA genome.

2.
Mol Plant Microbe Interact ; 25(1): 97-106, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21936664

ABSTRACT

RNA interference (RNAi) mechanism targets viral RNA for degradation. To test whether RNAi gene products contributed to viral RNA recombination, a series of Arabidopsis thaliana RNAi-defective mutants were infected with Brome mosaic virus (BMV) RNAs that have been engineered to support crossovers within the RNA3 segment. Single-cross RNA3-RNA1, RNA3-RNA2, and RNA3-RNA3 recombinants accumulated in both the wild-type (wt) and all knock-out lines at comparable frequencies. However, a reduced accumulation of novel 3' mosaic RNA3 recombinants was observed in ago1, dcl2, dcl4, and rdr6 lines but not in wt Col-0 or the dcl3 line. A BMV replicase mutant accumulated a low level of RNA3-RNA1 single-cross recombinants in Col-0 plants while, in a dcl2 dcl4 double mutant, the formation of both RNA3-RNA1 and mosaic recombinants was at a low level. A control infection in the cpr5-2 mutant, a more susceptible BMV Arabidopsis host, generated similar-to-Col-0 profiles of both single-cross and mosaic recombinants, indicating that recombinant profiles were, to some extent, independent of a viral replication rate. Also, the relative growth experiments revealed similar selection pressure for recombinants among the host lines. Thus, the altered recombinant RNA profiles have originated at the level of recombinant formation rather than because of altered selection. In conclusion, the viral replicase and the host RNAi gene products contribute in distinct ways to BMV RNA recombination. Our studies reveal that the antiviral RNAi mechanisms are utilized by plant RNA viruses to increase their variability, reminiscent of phenomena previously demonstrated in fungi.


Subject(s)
Arabidopsis/virology , Bromovirus/genetics , RNA Interference , RNA, Viral/genetics , RNA/analysis , Arabidopsis/genetics , Bromovirus/growth & development , Bromovirus/physiology , DNA, Complementary/genetics , Host-Pathogen Interactions , Mutation , Plant Diseases/virology , RNA/genetics , RNA, Viral/analysis , Virus Replication/genetics
3.
Virology ; 410(1): 129-41, 2011 Feb 05.
Article in English | MEDLINE | ID: mdl-21111438

ABSTRACT

RNA-RNA recombination salvages viral RNAs and contributes to their genomic variability. A recombinationally-active subgenomic promoter (sgp) has been mapped in Brome mosaic bromovirus (BMV) RNA3 (Wierzchoslawski et al., 2004. J. Virol.78, 8552-8864) and mRNA-like 5' sgRNA3a was characterized (Wierzchoslawski et al., 2006. J. Virol. 80, 12357-12366). In this paper we describe sgRNA3a-mediated recombination in both in vitro and in vivo experiments. BMV replicase-directed co-copying of (-) RNA3 with wt sgRNA3a generated RNA3 recombinants in vitro, but it failed to when 3'-truncated sgRNA3a was substituted, demonstrating a role for the 3' polyA tail. Barley protoplast co-transfections revealed that (i) wt sgRNA3a recombines at the 3' and the internal sites; (ii) 3'-truncated sgRNA3as recombine more upstream; and (iii) 5'-truncated sgRNA3 recombine at a low rate. In planta co-inoculations confirmed the RNA3-sgRNA3a crossovers. In summary, the non-replicating sgRNA3a recombines with replicating RNA3, most likely via primer extension and/or internal template switching.


Subject(s)
Bromovirus/genetics , Genome, Viral , RNA, Viral/genetics , Bromovirus/metabolism , Chenopodium quinoa/virology , Gene Expression Regulation, Viral/physiology , Hordeum , Plant Diseases/virology , Reassortant Viruses
4.
J Virol ; 80(24): 12357-66, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17005659

ABSTRACT

The synthesis of 3' subgenomic RNA4 (sgRNA4) by initiation from an internal sg promoter in the RNA3 segment was first described for Brome mosaic bromovirus (BMV), a model tripartite positive-sense RNA virus (W. A. Miller, T. W. Dreher, and T. C. Hall, Nature 313:68-70, 1985). In this work, we describe a novel 5' sgRNA of BMV (sgRNA3a) that we propose arises by premature internal termination and that encapsidates in BMV virions. Cloning and sequencing revealed that, unlike any other BMV RNA segment, sgRNA3a carries a 3' oligo(A) tail, in which respect it resembles cellular mRNAs. Indeed, both the accumulation of sgRNA3a in polysomes and the synthesis of movement protein 3a in in vitro systems suggest active functions of sgRNA3a during protein synthesis. Moreover, when copied in the BMV replicase in vitro reaction, the minus-strand RNA3 template generated the sgRNA3a product, likely by premature termination at the minus-strand oligo(U) tract. Deletion of the oligo(A) tract in BMV RNA3 inhibited synthesis of sgRNA3a during infection. We propose a model in which the synthesis of RNA3 is terminated prematurely near the sg promoter. The discovery of 5' sgRNA3a sheds new light on strategies viruses can use to separate replication from the translation functions of their genomic RNAs.


Subject(s)
Bromovirus/genetics , RNA, Viral/biosynthesis , RNA, Viral/genetics , Base Pairing , Base Sequence , Cloning, Molecular , DNA Primers , Gene Components , Models, Genetic , Molecular Sequence Data , Oligodeoxyribonucleotides/genetics , Sequence Analysis, DNA
5.
J Virol ; 78(16): 8552-64, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15280464

ABSTRACT

Previously, we and others mapped an increased homologous recombination activity within the subgenomic promoter (sgp) region in brome mosaic virus (BMV) RNA3. In order to correlate sgp-mediated recombination and transcription, in the present work we used BMV RNA3 constructs that carried altered sgp repeats. We observed that the removal or extension of the poly(U) tract reduced or increased recombination, respectively. Deletion of the sgp core hairpin or its replacement by a different stem-loop structure inhibited recombination activity. Nucleotide substitutions at the +1 or +2 transcription initiation position reduced recombination. The sgp core alone supported only basal recombination activity. The sites of crossovers mapped to the poly(U) region and to the core hairpin. The observed effects on recombination did not parallel those observed for transcription. To explain how both activities operate within the sgp sequence, we propose a dual mechanism whereby recombination is primed at the poly(U) tract by the predetached nascent plus strand, whereas transcription is initiated de novo at the sgp core.


Subject(s)
Bromovirus/genetics , Genome, Viral , Promoter Regions, Genetic , RNA, Viral/genetics , Recombination, Genetic , Transcription, Genetic , Base Sequence , Bromovirus/metabolism , Gene Expression Regulation, Viral , Molecular Sequence Data , Mutation , RNA, Viral/metabolism
6.
Virology ; 318(2): 482-92, 2004 Jan 20.
Article in English | MEDLINE | ID: mdl-14972517

ABSTRACT

Ecotypes of Arabidopsis thaliana supported the replication and systemic spread of Brome mosaic virus (BMV) RNAs. Infection was induced either by manual inoculation with viral RNA or by BMV virions, demonstrating that virus disassembly did not prevent infection. When in vitro-transcribed BMV RNAs 1-3 were used, production of subgenomic RNA4 was observed, showing that BMV RNA replication and transcription had occurred. Furthermore, inoculations of the transgenic Arabidopsis line that expressed a suppressor of RNA interference (RNAi) pathway markedly increased the BMV RNA concentrations. Inoculations with designed BMV RNA3 recombination vectors generated both homologous and nonhomologous BMV RNA-RNA recombinants. Thus, all cellular factors essential for BMV RNA replication, transcription, and RNA recombination were shown to be present in Arabidopsis. The current scope of understanding of the model Arabidopsis plant system should facilitate the identification of these factors governing the BMV life cycle.


Subject(s)
Arabidopsis/virology , Bromovirus/physiology , RNA, Viral/genetics , Recombination, Genetic , Virus Replication , 3' Flanking Region , 5' Flanking Region , Arabidopsis/genetics , Base Sequence , Bromovirus/genetics , Bromovirus/pathogenicity , Molecular Sequence Data , Plants, Genetically Modified , RNA Interference , RNA, Viral/biosynthesis , Species Specificity , Transcription, Genetic , Virion/pathogenicity
7.
J Virol ; 77(12): 6769-76, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12767997

ABSTRACT

Genetic RNA recombination plays an important role in viral evolution, but its molecular mechanism is not well understood. In this work we describe homologous RNA recombination activity that is supported by a subgenomic promoter (sgp) region in the RNA3 segment of brome mosaic bromovirus (BMV), a tripartite plus-strand RNA virus. The crossover frequencies were determined by coinoculations with pairs of BMV RNA3 variants that carried a duplicated sgp region flanked by marker restriction sites. A region composed of the sgp core, a poly(A) tract, and an upstream enhancer supported homologous exchanges in 25% of the analyzed RNA3 progeny. However, mutations in the sgp core stopped both the transcription of the sgp RNA and homologous recombination. These data provide evidence for an association of RNA recombination with transcription.


Subject(s)
Bromovirus/genetics , Crossing Over, Genetic , Promoter Regions, Genetic , Transcription, Genetic , Bromovirus/pathogenicity , Chenopodium quinoa/virology , Gene Expression Regulation, Viral , Genome, Viral , Mutation , Plant Diseases/virology , RNA, Viral/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...