Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 15(15): 4117-4124, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38591741

ABSTRACT

Plasmonic nanoparticles are highly tunable light-harvesting materials with a wide array of applications in photonics and catalysis. More recently, there has been interest in using aerosolized plasmonic nanoparticles for cloud formation, airborne photocatalysts, and molecular sensors, all of which take advantage of the large scattering cross sections and the ability of these particles to support intense local field enhancement ("hot spots"). While extensive research has investigated properties of plasmonic particles in the solution phase, surfaces, and films, aerosolized plasmonics are relatively unexplored. Here, we demonstrate how the capping ligand, suspension solvent, and atomization conditions used for aerosol generation control the steady-state optical properties of aerosolized Silica@Au plasmonic nanoshells. Our experimental results, supported with spectral simulations, illustrate that ligand coverage and atomization conditions control the degree of solvent retention and thus the spectral characteristics and potential access to surfaces for catalysis in the aerosol phase, opening a new regime for tunable applications of plasmonic metamaterials.

2.
J Am Chem Soc ; 138(51): 16754-16763, 2016 12 28.
Article in English | MEDLINE | ID: mdl-27982584

ABSTRACT

We use micro-Raman spectroscopy to measure the vibrational structure of the atomically precise cadmium selenide quantum dots Cd35Se20X30L30, Cd56Se35X42L42, and Cd84Se56X56L56. These quantum dots have benzoate (X) and n-butylamine (L) ligands and tetrahedral (Td) shape with edges that range from 1.7 to 2.6 nm in length. Investigating this previously unexplored size regime allows us to identify the transition from molecular vibrations to bulk phonons in cadmium selenide quantum dots for the first time. Room-temperature Raman spectra have broad CdSe peaks at 175 and 200 cm-1. Density functional theory calculations assign these peaks to molecular surface and interior vibrational modes, respectively, and show that the interior, surface, and ligand atom motion is strongly coupled. The interior peak intensity increases relative to the surface peak as the cluster size increases due to the relative increase in the polarizability of interior modes with quantum dot size. The Raman spectra do not change with temperature for molecular Cd35Se20X30L30, while the interior peak narrows and shifts to higher energy as temperature decreases for Cd84Se56X56L56, a spectral evolution typical of a phonon. This result shows that the single bulk unit cell contained within Cd84Se56X56L56 is sufficient to apply a phonon confinement model, and that Cd56Se35X42L42, with its 2.1 nm edge length, marks the boundary between molecular vibrations and phonons.

SELECTION OF CITATIONS
SEARCH DETAIL
...