Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Pharmacol ; 63: 34-47, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30142495

ABSTRACT

Diesel exhaust emissions (DEE), being one of the main causes of ambient air pollution, exert a detrimental effect on human health and increase morbidity and mortality related to cardiovascular and pulmonary diseases. Therefore, the objective of the present study was to investigate potential adverse effects of exhausts emissions from B7 fuel, the first-generation biofuel containing 7% of fatty acid methyl esters (FAME), and SHB20 fuel, the second-generation biofuel containing 20% FAME/hydrotreated vegetable oil (HVO), after a whole-body exposure with and without diesel particle filter (DPF). The experiment was performed on 95 male Fischer 344 rats, divided into 10 groups (8 experimental, 2 control). Animals were exposed to DEE (diluted with charcoal-filtered room air to 2.1-2.2% (v/v)) for 7 or 28 days (6 h/day, 5 days/week) in an inhalation chamber. DEE originated from Euro 5 engine with or without DPF treatment, run on B7 or SHB20 fuel. Animals in the control groups were exposed to clean air. Our results showed that the majority of haematological and biochemical parameters examined in blood were at a similar level in the exposed and control animals. However, exposure to DEE from the SHB20 fuel caused an increase in the number of red blood cells (RBC) and haemoglobin concentration. Moreover, 7 days exposure to DEE from SHB20 fuel induced genotoxic effects manifested by increased levels of DNA single-strand breaks in peripheral blood lymphocytes. Furthermore, inhalation of both types of DEE induced oxidative stress and caused imbalance of anti-oxidant defence enzymes. In conclusion, exposure to DEE from B7, which was associated with higher exposure to polycyclic aromatic hydrocarbons, resulted in decreased number of T and NK lymphocytes, while DEE from SHB20 induced a higher level of DNA single-strand breaks, oxidative stress and increased red blood cells parameters. Additionally, DPF technology generated increased number of smaller PM and made the DEE more reactive and more harmful, manifested as deregulation of redox balance.


Subject(s)
Air Pollutants/toxicity , DNA Breaks, Single-Stranded , Erythrocytes/drug effects , Oxidative Stress , Vehicle Emissions/toxicity , Animals , Erythrocyte Count , Fatty Acids/chemistry , Fatty Acids/toxicity , Hydrogenation , Male , Plant Oils/chemistry , Plant Oils/toxicity , Rats , Rats, Inbred F344 , Toxicity Tests
2.
Toxicol Lett ; 290: 133-144, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29578054

ABSTRACT

Increasing use of silver nanoparticles (AgNPs) results in increased human exposure. AgNPs are able to cross brain-blood barrier and are a risk factor for the brain. Thus, we hypothesized that AgNPs exposure might affect hippocampal dependent memory, which required cognitive coordination processes. To verify the assumption, in this study we evaluated the effects of orally administered bovine serum albumin (BSA)-coated AgNPs on spatial memory, which engage cognitive coordination processes for on-going stimuli segregation. Rats following 28 days of oral administration with 1 mg/kg (n = 10) or 30 mg/kg (n = 10) BSA-AgNPs or saline, a control groups (n = 10, n = 8), were tested with an active place avoidance task in the Carousel Maze test. The study revealed significant impairment of long- and short-term memory, irrespectively of dose of AgNPs, whereas non-cognitive activity was on a similar level. We found significantly higher content of silver in the hippocampus in comparison to the lateral cortex. No silver was found in the cerebellum and the frontal cortex. The nanoSIMS analysis reveal a weak signal of silver in the hippocampus of AgNPs treated animals that should be attributed to the presence of silver in ionic form rather than AgNPs. Our findings indicate that oral exposure to a low dose AgNPs induces detrimental effect on memory and cognitive coordination processes. The presence of silver ions rather than AgNPs in different brain regions, in particular the hippocampus, suggests crucial role of silver ions in AgNPs-induced impairment of the higher brain functions.


Subject(s)
Memory Disorders/chemically induced , Metal Nanoparticles/toxicity , Silver/toxicity , Administration, Oral , Animals , Brain/drug effects , Brain/metabolism , Cognition/drug effects , Male , Maze Learning/drug effects , Rats , Rats, Wistar , Silver/analysis
3.
Toxicol Appl Pharmacol ; 313: 35-46, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27746313

ABSTRACT

The growing use of silver nanoparticles (AgNPs) in various applications, including consumer, agriculture and medicine products, has raised many concerns about the potential risks of nanoparticles (NPs) to human health and the environment. An increasing body of evidence suggests that AgNPs may have adverse effects of humans, thus the aim of this study was to investigate the effects of AgNPs on the male reproductive system. Silver particles (20nm AgNPs (groups Ag I and Ag II) and 200nm Ag sub-micron particles (SPs) (group Ag III)) were administered intravenously to male Wistar rats at a dose of 5 (groups Ag I and Ag III) or 10 (group Ag II) mg/kg of body weight. The biological material was sampled 24h, 7days and 28days after injection. The obtained results revealed that the AgNPs had altered the luteinising hormone concentration in the plasma and the sex hormone concentration in the plasma and testes. Plasma and intratesticular levels of testosterone and dihydrotestosterone were significantly decreased both 7 and 28days after treatment. No change in the prolactin and sex hormone-binding globulin concentration was observed. Exposure of the animals to AgNPs resulted in a considerable decrease in 5α-reductase type 1 and the aromatase protein level in the testis. Additionally, expression analysis of genes involved in steroidogenesis and the steroids metabolism revealed significant down-regulation of Star, Cyp11a1, Hsd3b1, Hsd17b3 and Srd5a1 mRNAs in AgNPs/AgSPs-exposed animals. The present study demonstrates the potential adverse effect on the hormonal regulation of the male reproductive function following AgNP/AgSP administration, in particular alterations of the sex steroid balance and expression of genes involved in steroidogenesis and the steroids metabolism.


Subject(s)
Gonadal Steroid Hormones/physiology , Nanoparticles/toxicity , Reproduction/drug effects , Silver/chemistry , Animals , Male , Nanoparticles/chemistry , Rats , Rats, Wistar
4.
J Appl Toxicol ; 32(11): 920-8, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22696427

ABSTRACT

Silver nanoparticles (AgNPs) are the most commonly used nanoparticles owing to their antimicrobial properties. The motivation of the present study was (1) to analyze the effect of silver particle size on rat tissue distribution at different time points, (2) to determine the accumulation of AgNPs in potential rat target organs, (3) to analyze the intracellular distribution of AgNPs and (4) to examine the excretion of AgNPs by urine and feces. AgNPs were characterized by dynamic light scattering (DLS), zeta potential measurements, BET surface area measurements, transmission and scanning electron microscopy. AgNPs (20 and 200 nm) were administered intravenously (i.v.) to male Wistar rats at a dose of 5 mg kg(-1) of body weight. Biological material was sampled 24 h, 7 and 28 days after injection. Using inductively coupled plasma-mass spectrometry (ICP-MS) and transmission electron microscopy (TEM) it was observed that AgNPs translocated from the blood to the main organs and the concentration of silver in tissues was significantly higher in rats treated with 20 nm AgNPs as compared with 200 nm AgNPs. The highest concentration of silver was found in the liver after 24 h. After 7 days, a high level of silver was observed in the lungs and spleen. The silver concentration in the kidneys and brain increased during the experiment and reached the highest concentration after 28 days. Moreover, the highest concentration of AgNPs was observed in the urine 1 day after the injection, maintained high for 14 days and then decreased. The fecal level of silver in rats was the highest within 2 days after AgNPs administration and then decreased.


Subject(s)
Metal Nanoparticles/chemistry , Silver/metabolism , Animals , Dose-Response Relationship, Drug , Feces/chemistry , Liver/metabolism , Male , Mass Spectrometry , Metal Nanoparticles/administration & dosage , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Rats , Rats, Wistar , Silver/administration & dosage , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...