Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Appl ; 33(2): e2762, 2023 03.
Article in English | MEDLINE | ID: mdl-36218186

ABSTRACT

Monitoring trends in animal populations in arid regions is challenging due to remoteness and low population densities. However, detecting species' tracks or signs is an effective survey technique for monitoring population trends across large spatial and temporal scales. In this study, we developed a simulation framework to evaluate the performance of alternative track-based monitoring designs at detecting change in species distributions in arid Australia. We collated presence-absence records from 550 2-ha track-based plots for 11 vertebrates over 13 years and fitted ensemble species distribution models to predict occupancy in 2018. We simulated plausible changes in species' distributions over the next 15 years and, with estimates of detectability, simulated monitoring to evaluate the statistical power of three alternative monitoring scenarios: (1) where surveys were restricted to existing 2-ha plots, (2) where surveys were optimized to target all species equally, and (3) where surveys were optimized to target two species of conservation concern. Across all monitoring designs and scenarios, we found that power was higher when detecting increasing occupancy trends compared to decreasing trends owing to the relatively low levels of initial occupancy. Our results suggest that surveying 200 of the existing plots annually (with a small subset resurveyed twice within a year) will have at least an 80% chance of detecting 30% declines in occupancy for four of the five invasive species modeled and one of the six native species. This increased to 10 of the 11 species assuming larger (50%) declines. When plots were positioned to target all species equally, power improved slightly for most compared to the existing survey network. When plots were positioned to target two species of conservation concern (crest-tailed mulgara and dusky hopping mouse), power to detect 30% declines increased by 29% and 31% for these species, respectively, at the cost of reduced power for the remaining species. The effect of varying survey frequency depended on its trade-off with the number of sites sampled and requires further consideration. Nonetheless, our research suggests that track-based surveying is an effective and logistically feasible approach to monitoring broad-scale occupancy trends in desert species with both widespread and restricted distributions.


Subject(s)
Conservation of Natural Resources , Ecosystem , Animals , Mice , Conservation of Natural Resources/methods , Population Dynamics , Vertebrates , Australia
2.
Reprod Fertil Dev ; 22(3): 516-22, 2010.
Article in English | MEDLINE | ID: mdl-20188024

ABSTRACT

Sperm traits have been found to vary between individuals within populations in a variety of taxa. Sperm motility, morphometry and viability may be expected to have important effects on male fertility, although previous studies have found varying patterns, especially in external fertilisers. In the present study, we examined the effects of sperm swimming velocity, the proportion of motile spermatozoa, sperm head and tail length and the proportion of live spermatozoa on fertilisation success in the externally fertilising myobatrachid frog Crinia georgiana using IVF techniques and by controlling sperm numbers. We found no effect of any of the sperm traits we measured on IVF success. Neither did we find any relationship between sperm morphology and sperm performance. There was a negative relationship between sperm viability and male body size, which could be a function of age or an alternative tactic of differential investment in spermatozoa by smaller-sized males using sneak tactics in multiple matings. In contrast with most externally fertilising aquatic organisms, high rates of fertilisation appear to be achieved in C. georgiana with relatively low sperm swimming speeds.


Subject(s)
Anura/physiology , Sperm Motility/physiology , Spermatozoa/cytology , Animals , Body Weight/physiology , Cell Shape , Fertility/physiology , Fertilization/physiology , Male , Organ Size/physiology , Sperm Count , Testis/physiology
3.
Proc Biol Sci ; 276(1675): 3955-61, 2009 Nov 22.
Article in English | MEDLINE | ID: mdl-19710059

ABSTRACT

When sperm compete to fertilize available ova, selection is expected to favour ejaculate traits that contribute to a male's fertilization success. While there is much evidence to show that selection favours increased numbers of sperm, only a handful of empirical studies have examined how variation in sperm form and function contributes to competitive fertilization success. Here, we examine selection acting on sperm form and function in the externally fertilizing myobatrachid frog, Crinia georgiana. Using in vitro fertilization techniques and controlling for variation in the number of sperm contributed by males in competitive situations, we show that males with a greater proportion of motile sperm, and motile sperm with slower swimming velocities, have an advantage when competing for fertilizations. Sperm morphology and the degree of genetic similarity between putative sires and the female had no influence on competitive fertilization success. These unusual patterns of selection might explain why frog sperm typically exhibit relatively slow swimming speeds and sustained longevity.


Subject(s)
Anura/physiology , Sperm Motility/physiology , Spermatozoa/physiology , Animals , Female , Male , Ovum/physiology , Reproduction/physiology
4.
Evolution ; 62(4): 879-86, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18208566

ABSTRACT

Theory suggests that multiple mating by females can evolve as a mechanism for acquiring compatible genes that promote offspring fitness. Genetic compatibility models predict that differences in fitness among offspring arise from interactions between male and female haplotypes. Using a cross-classified breeding design and in vitro fertilization, we raised families of maternal and paternal half-siblings of the frog Crinia georgiana, a species with a polyandrous breeding system and external fertilization. After controlling for variation in maternal provisioning, we found significant effects of interacting parental haplotypes on fertilization success, and nonadditive genetic effects on measures of offspring fitness such as embryo survival, and survival to, size at, and time to metamorphosis. Additive genetic variation due to males and females was negligible, and not statistically significant for any of the fitness traits measured. Combinations of parental haplotypes that resulted in high rates of fertilization produced offspring with higher embryo survival and rapid juvenile development. We suggest that a gamete recognition mechanism for selective fertilization by compatible sperm may promote offspring fitness in this system.


Subject(s)
Anura/physiology , Genetic Variation , Oviparity/physiology , Selection, Genetic , Sexual Behavior, Animal/physiology , Animals , Anura/genetics , Breeding , Female , Fertilization in Vitro , Male
5.
Oecologia ; 146(1): 98-109, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16003504

ABSTRACT

Intraclutch variation in offspring size should evolve when offspring encounter unpredictable environmental conditions. This form of bet-hedging should maximise the lifetime reproductive success of individuals that engage it. We documented the numbers of eggs and means and variances of yolk volume in 15 frog species that occur in tropical savanna woodland. We experimentally determined the effects of initial yolk volume on larval growth patterns in four species. Intraclutch variation in yolk volume occurred to some degree in all species surveyed. Some species had very low, others had very high, intraclutch variation in yolk volume, but all species in which some clutches were highly variable also produced clutches with low variability. Species that occur in areas where the offspring environment is likely to be unpredictable had elevated levels of intraclutch variation in egg provisioning. There was no trade-off between egg size and number in any species surveyed. Under benign laboratory conditions, tadpoles from eggs with larger yolk volumes hatched at larger sizes, and these size differences persisted through a substantial proportion of the larval stage. This indicates that intraclutch variation in egg size has major offspring and thus parental fitness consequences, and is therefore a functional selection variable. This study provides evidence in support of models which predict that intraclutch variation in offspring provisioning can evolve in organisms that reproduce in unpredictable habitats.


Subject(s)
Anura/physiology , Clutch Size , Ovum , Animals , Anura/growth & development , Larva/growth & development , Queensland , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...