Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO J ; 43(2): 196-224, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177502

ABSTRACT

Ion channels, transporters, and other ion-flux controlling proteins, collectively comprising the "ion permeome", are common drug targets, however, their roles in cancer remain understudied. Our integrative pan-cancer transcriptome analysis shows that genes encoding the ion permeome are significantly more often highly expressed in specific subsets of cancer samples, compared to pan-transcriptome expectations. To enable target selection, we identified 410 survival-associated IP genes in 33 cancer types using a machine-learning approach. Notably, GJB2 and SCN9A show prominent expression in neoplastic cells and are associated with poor prognosis in glioblastoma, the most common and aggressive brain cancer. GJB2 or SCN9A knockdown in patient-derived glioblastoma cells induces transcriptome-wide changes involving neuron projection and proliferation pathways, impairs cell viability and tumor sphere formation in vitro, perturbs tunneling nanotube dynamics, and extends the survival of glioblastoma-bearing mice. Thus, aberrant activation of genes encoding ion transport proteins appears as a pan-cancer feature defining tumor heterogeneity, which can be exploited for mechanistic insights and therapy development.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Animals , Mice , Glioblastoma/pathology , Aggression , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Transcriptome , Ion Transport/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , NAV1.7 Voltage-Gated Sodium Channel/genetics
3.
Mol Cell ; 77(6): 1307-1321.e10, 2020 03 19.
Article in English | MEDLINE | ID: mdl-31954095

ABSTRACT

A comprehensive catalog of cancer driver mutations is essential for understanding tumorigenesis and developing therapies. Exome-sequencing studies have mapped many protein-coding drivers, yet few non-coding drivers are known because genome-wide discovery is challenging. We developed a driver discovery method, ActiveDriverWGS, and analyzed 120,788 cis-regulatory modules (CRMs) across 1,844 whole tumor genomes from the ICGC-TCGA PCAWG project. We found 30 CRMs with enriched SNVs and indels (FDR < 0.05). These frequently mutated regulatory elements (FMREs) were ubiquitously active in human tissues, showed long-range chromatin interactions and mRNA abundance associations with target genes, and were enriched in motif-rewiring mutations and structural variants. Genomic deletion of one FMRE in human cells caused proliferative deficiencies and transcriptional deregulation of cancer genes CCNB1IP1, CDH1, and CDKN2B, validating observations in FMRE-mutated tumors. Pathway analysis revealed further sub-significant FMREs at cancer genes and processes, indicating an unexplored landscape of infrequent driver mutations in the non-coding genome.


Subject(s)
Biomarkers, Tumor/genetics , Chromatin/metabolism , Gene Regulatory Networks , Mutation , Neoplasms/genetics , Neoplasms/pathology , Regulatory Sequences, Nucleic Acid , Cell Proliferation , Chromatin/genetics , Computational Biology/methods , DNA Mutational Analysis , Genome, Human , HEK293 Cells , Humans
4.
PLoS One ; 13(2): e0191510, 2018.
Article in English | MEDLINE | ID: mdl-29415082

ABSTRACT

Our previous studies demonstrated that INPP4B, a member of the PI3K/Akt signaling pathway, is overexpressed in a subset of AML patients and is associated with lower response to chemotherapy and shorter survival. INPP4B expression analysis in AML revealed a right skewed frequency distribution with 25% of patients expressing significantly higher levels than the majority. The 75% low/25% high cut-off revealed the prognostic power of INPP4B expression status in AML, which would not have been apparent with a standard median cut-off approach. Our identification of a clinically relevant non-median cut-off for INPP4B indicated a need for a generalizable non-median dichotomization approach to optimally study clinically relevant genes. To address this need, we developed Subgroup Identifier (SubID), a tool which examines the relationship between a continuous variable (e.g. gene expression), and a test parameter (e.g. CoxPH or Fisher's exact P values). In our study, Fisher's exact SubID was used to reveal EVI1 as a transcriptional regulator of INPP4B in AML; a finding which was validated in vitro. Next, we used CoxPH SubID to conduct a pan-cancer analysis of INPP4B's prognostic significance. Our analysis revealed that INPP4Blow is associated with shorter survival in kidney clear cell, liver hepatocellular, and bladder urothelial carcinomas. Conversely, INPP4Blow was shown to be associated with increased survival in pancreatic adenocarcinoma in three independent datasets. Overall, our study describes the development and application of a novel subgroup identification tool used to identify prognostically significant rare subgroups based upon gene expression, and for investigating the association between a gene with skewed frequency distribution and potentially important upstream and downstream genes that relate to the index gene.


Subject(s)
Gene Expression Regulation, Neoplastic/physiology , Leukemia, Myeloid, Acute/genetics , MDS1 and EVI1 Complex Locus Protein/physiology , Neoplasms/genetics , Phosphoric Monoester Hydrolases/genetics , Cell Line, Tumor , Humans , Leukemia, Myeloid, Acute/pathology , Prognosis
5.
Pediatr Blood Cancer ; 65(5): e26931, 2018 05.
Article in English | MEDLINE | ID: mdl-29350448

ABSTRACT

BACKGROUND: Children with retinoblastoma treated with carboplatin chemotherapy risk moderate to severe, irreversible hearing loss. Based on published evidence, we hypothesized that ototoxicity risk is associated with clinical parameters and variants in candidate genes in drug metabolism pathways (methyltransferases [thiopurine S-methyltransferase, TPMT] and [catechol-O-methyltransferase, COMT], and drug transporter ABCC3). PROCEDURE: We retrospectively reviewed clinical records of patients with retinoblastoma treated with carboplatin chemotherapy regarding age (at diagnosis and chemotherapy initiation), chemotherapy sessions (cycles number, drug doses, and cumulative carboplatin dose), and hearing loss (defined as ototoxicity ≥grade 2 by at least one classification system). Blood samples were genotyped for genetic variants in TPMT (rs12201199, rs1800460), COMT (rs4646316, rs9332377), and ABCC3 (rs1051640) by quantitative PCR and confirmed by allele-specific PCR. Univariate statistical tests, receiver-operating characteristic analysis, and Kaplan-Meier curves were used to examine the association between hearing loss, clinical factors, and variants in candidate genes. RESULTS: Audiometric data and stored DNA were available for 71 patients with retinoblastoma (88% carried an RB1 pathogenic variant allele). Median carboplatin cumulative dose was 1,400 mg/m2 (260-5,148 mg/m2 ). Ototoxicity occurred in 18 patients (25%), strongly associated with age at diagnosis (P = 0.01) and age at chemotherapy initiation (OR = 4.99, P = 0.008). The highest likelihood ratio of hearing loss was associated with chemotherapy initiation <4.25 months of age. Ototoxicity was not associated with any tested genetic variants. CONCLUSIONS: We observed a 25% prevalence of ototoxicity in patients with retinoblastoma treated with carboplatin, higher than previously published. Age at chemotherapy initiation was associated with carboplatin-induced ototoxicity, with children <4.25 months of age at highest risk.


Subject(s)
Antineoplastic Agents/adverse effects , Carboplatin/adverse effects , Genetic Markers , Hearing Loss/diagnosis , Polymorphism, Single Nucleotide , Retinoblastoma/drug therapy , Catechol O-Methyltransferase/genetics , Child , Child, Preschool , Female , Follow-Up Studies , Hearing Loss/chemically induced , Hearing Loss/genetics , Humans , Infant , Male , Methyltransferases/genetics , Multidrug Resistance-Associated Proteins/genetics , Prognosis , Retinal Neoplasms/drug therapy , Retinal Neoplasms/pathology , Retinoblastoma/pathology , Retrospective Studies
6.
Nucleic Acids Res ; 46(D1): D901-D910, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29126202

ABSTRACT

Interpretation of genetic variation is needed for deciphering genotype-phenotype associations, mechanisms of inherited disease, and cancer driver mutations. Millions of single nucleotide variants (SNVs) in human genomes are known and thousands are associated with disease. An estimated 21% of disease-associated amino acid substitutions corresponding to missense SNVs are located in protein sites of post-translational modifications (PTMs), chemical modifications of amino acids that extend protein function. ActiveDriverDB is a comprehensive human proteo-genomics database that annotates disease mutations and population variants through the lens of PTMs. We integrated >385,000 published PTM sites with ∼3.6 million substitutions from The Cancer Genome Atlas (TCGA), the ClinVar database of disease genes, and human genome sequencing projects. The database includes site-specific interaction networks of proteins, upstream enzymes such as kinases, and drugs targeting these enzymes. We also predicted network-rewiring impact of mutations by analyzing gains and losses of kinase-bound sequence motifs. ActiveDriverDB provides detailed visualization, filtering, browsing and searching options for studying PTM-associated mutations. Users can upload mutation datasets interactively and use our application programming interface in pipelines. Integrative analysis of mutations and PTMs may help decipher molecular mechanisms of phenotypes and disease, as exemplified by case studies of TP53, BRCA2 and VHL. The open-source database is available at https://www.ActiveDriverDB.org.


Subject(s)
Databases, Genetic , Databases, Protein , Disease/genetics , Mutation , Protein Processing, Post-Translational/genetics , Amino Acid Substitution , Data Mining/methods , Datasets as Topic , Genetic Association Studies , Genetic Variation , Genome, Human , Genomics , Humans , Molecular Sequence Annotation , Polymorphism, Single Nucleotide , Protein Kinases/genetics , Proteomics , Software , User-Computer Interface
7.
Trends Mol Med ; 21(9): 530-2, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26150301

ABSTRACT

INPP4B acts as a tumor suppressor in various epithelial cancers by inhibiting PI3K/Akt signaling. Unexpectedly, tumor-promoting features of INPP4B in leukemia and breast cancer have been recently uncovered. In this spotlight, we discuss the seemingly paradoxical nature of INPP4B-mediated signaling in cancer.


Subject(s)
Neoplasms/enzymology , Phosphatidylinositols/metabolism , Phosphoric Monoester Hydrolases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Humans , Neoplasms/genetics , Neoplasms/metabolism , Phosphoric Monoester Hydrolases/genetics , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...