Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Exp Toxicol ; 23(10): 463-71, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15553171

ABSTRACT

Organochlorine pesticides are used worldwide. To our knowledge there have been no studies dealing with the effects of these agents under in vitro conditions on human natural killer (NK) cell cytotoxic function. NK cells play a central role in immune defense against tumor development and viral infections. Thus, any agent that interferes with the ability of NK cells to lyse their targets could increase the risk of tumor incidence and/or viral infections. In this study, we examined the effects of organochlorine pesticides and some of their breakdown products on the ability of human NK cells to lyse tumor cells. A total of 11 compounds were tested. The compounds were tested in both purified NK cells as well as a cell preparation that contained other mononuclear cells (predominantly T cells) and NK lymphocytes (referred to as T/NK cells). Lymphocytes were exposed to the compounds for periods of time ranging from 1 hour to 6 days. Exposure of highly purified NK cells to 5 microM alpha-chlordane, gamma-chlordane, 4,4'-DDT, heptachlor, oxychlordane, or pentachlorophenol (PCP) inhibited their ability to destroy K562 tumor-cells by 88+/-5, 92+/-8, 61+/-13%, 64+/-10%, 69+/-11%, 76+/-12%, respectively, after a 24 h exposure. The loss of cytotoxic function seen with alpha-and gamma-chlordane remained essentially constant out to 6 days, while that seen with 4,4'-DDT, oxychordane and PCP increased with longer exposures (6 d). PCP was the most effective of the compounds tested at decreasing NK function. Of the compounds that caused decreased lytic function when tested in purified NK cells, only PCP and oxychordane decreased the lytic function of the T/NK cell preparation after any exposure. The results provide evidence of relative toxic potential for the 11 compounds and their immunomodulatory effects on other mononuclear cells (such as T-cells, B-cells, and monocytes) as well as NK lymphocyte function.


Subject(s)
Cytotoxicity, Immunologic/drug effects , Hydrocarbons, Chlorinated/toxicity , Immunologic Factors/toxicity , Killer Cells, Natural/immunology , Pesticides/toxicity , Adult , Aged , Cell Survival/drug effects , Cells, Cultured , Chlordan/toxicity , Chromium Radioisotopes , Cytotoxicity Tests, Immunologic , Cytotoxicity, Immunologic/immunology , DDT/toxicity , Dose-Response Relationship, Drug , Female , Heptachlor/toxicity , Humans , Killer Cells, Natural/pathology , Male , Middle Aged , Pentachlorophenol/toxicity
2.
Environ Toxicol ; 19(6): 554-63, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15526271

ABSTRACT

Human natural killer (NK) lymphocytes play a central role in immune system defense against viral infection and against the formation of primary tumors. Organotin (OT) pesticides have been used in industrial and agricultural applications, and OT contamination has been reported in water, sediment, and fish. Carbamate pesticides are currently used in agricultural chemicals. Two specific carbamates used in agriculture are ziram and maneb; ziram also is used as an additive in rubber products including latex gloves. In previous studies we demonstrated that at concentrations in the 150-200 nM range, the OTs tributyltin (TBT) and triphenyltin (TPT) were capable of disrupting the function of human NK cells after incubations to as short as 24 h. Previously, we also examined the effects of ziram and maneb at higher concentrations on the cytotoxic function of human NK cells. The current study examined the effects of exposure of up to 6 days to lower concentrations of each of these compounds on the cytotoxic function of NK cells. The OTs were studied at concentrations ranging from 200 to 10 nM; ziram was studied at concentrations of 2.5 microM-125 nM and maneb at concentrations of 10-1 microM. These conditions were studied both in highly purified NK cells and in a mixture of lymphocytes containing both T and NK cells. As little as 25 nM TBT decreased the function of purified NK cells after 24 and 48 h, whereas 10 nM TBT was effective after 6 days. The lowest level of TPT that was effective at 24 h was 50 nM whereas the results after 48 h and 6 days were similar to those seen with TBT. The presence of T lymphocytes diminished the effects of both TBT and TPT on NK cytotoxic function. A concentration of ziram as low as 125 nM produced significant loss of cytotoxic function in highly purified NK cells (65% decrease in function after 6 days). The toxicity of each of the compounds studied increased very significantly with length of exposure.


Subject(s)
Fungicides, Industrial/toxicity , Killer Cells, Natural/drug effects , Killer Cells, Natural/physiology , Maneb/toxicity , Organotin Compounds/toxicity , Trialkyltin Compounds/toxicity , Ziram/toxicity , Cell Culture Techniques , Dose-Response Relationship, Drug , Humans , T-Lymphocytes/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...