Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 7125, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532065

ABSTRACT

Water pollution presents a substantial environmental challenge with extensive implications for water resources, ecosystem sustainability, and human health. Using a South African catchment, this study aimed to provide watershed managers with a framework for selecting best management practices (BMPs) to reduce pollution and the related risk to river users, while also including the perspectives of key catchment stakeholders. The framework encompassed the identification of and consultation with key stakeholders within the catchment. A Multi-Criteria Decision Analysis (MCDA) methodology using the Simple Multi-Attribute Rating Technique for Enhanced Stakeholder Take-up (SMARTEST) was used to identify and prioritise suitable BMPs in a case study. Decision alternatives and assessment criteria as well as their weights were derived based on stakeholder responses to a two-stage survey. Stakeholders included those utilising the river for domestic and recreational purposes, municipal representatives, scientists, NGOs, and engineers. The assessment of decision alternatives considered environmental, economic, and social criteria. The aggregated scores for decision alternatives highlighted the significance of involving stakeholders throughout the decision process. This study recommends the pairing of structural and non-structural BMPs. The findings provide valuable insights for catchment managers, policymakers, and environmental stakeholders seeking inclusive and effective pollution mitigation strategies in a catchment.

2.
Environ Sci Pollut Res Int ; 30(55): 118013-118024, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37874515

ABSTRACT

A quantitative chemical risk assessment was performed using published data as well as data from the official monitoring programme for the uMsunduzi River in KwaZulu-Natal, South Africa. The chemicals assessed were organochlorinated pesticides (OCPs), pharmaceuticals and personal care products (PPCPs), heavy metals, and nitrates and phosphates. The water from uMsunduzi River is used locally without treatment. Consequently, the exposure routes investigated were via ingestion during domestic drinking and incidental ingestion during recreational activities, which were swimming and non-competitive canoeing, for both adults and children. For the individual chemicals, non-carcinogenic risks using the hazard quotient (HQ) and carcinogenic risks using the cancer risk (CR) were quantified. It was found that the exposed population is likely to experience non-carcinogenic effects from pesticides and phosphates, but not from PPCPs, heavy metals and nitrates. This study also found that the carcinogenic risks for OCPs were higher than the tolerable limit of 10-5, while for lead the risk was below the tolerable limit. Some of the activities that potentially contribute to chemicals onto the uMsunduzi River are subsistence farming, small plantations, illegal dumping, industries, and broken sewers. The findings of this study may act as the technical foundation for the introduction of pollution reduction measures within the catchment, including public education.


Subject(s)
Metals, Heavy , Pesticides , Water Pollutants, Chemical , Adult , Child , Humans , Environmental Monitoring , Rivers , South Africa , Metals, Heavy/analysis , Phosphates , Risk Assessment , Water Pollutants, Chemical/analysis , China
3.
J Water Health ; 20(4): 641-656, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35482381

ABSTRACT

South African rivers generally receive waste from inadequate wastewater infrastructure, mines, and farming activities, among others. The uMsunduzi River in KwaZulu-Natal, South Africa, is among these recipients with recorded poor to very poor water quality. To identify parts of the uMsunduzi River that are polluted by Cryptosporidium and Escherichia coli (E. coli), this study mapped out pollutants emanating from point and non-point sources using the Soil and Water Assessment Tool (SWAT). Streamflow calibration in the upper and lower reaches of the catchment showed good performance with R2 of 0.64 and 0.58, respectively. SWAT water quality output data were combined with a Quantitative Microbial Risk Assessment (QMRA) to understand the microbial health implications for people using river water for drinking, recreational swimming, and non-competitive canoeing. QMRA results for Cryptosporidium and pathogenic E. coli showed that the probability of infection for most users exceeds the acceptable level for drinking and recreation as outlined in the South African water quality guidelines, and by the World Health Organization (WHO). The results of this study can be used as a baseline to assess the economic and health implications of different management plans, resulting in better-informed, cost-effective, and impactful decision-making.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Escherichia coli , Humans , Risk Assessment , Rivers/chemistry , South Africa , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL
...