Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Radiol ; 19(5): 1289-95, 2009 May.
Article in English | MEDLINE | ID: mdl-19153744

ABSTRACT

The aim of this study was to assess the ability of dual-energy computed tomography (DECT) to classify phantom renal lesions as cysts or enhancing masses. Six cylinders ranging in diameter from 0.5 to 3.0 cm were filled with distilled water or titrated iodinated contrast solutions with CT attenuation values at 120 kVp of 0 Hounsfield units (HU) for a cyst proxy or 10, 20, or 40 HU to represent enhancing masses. These were placed in a 12-cm-diameter renal phantom containing puréed beef mixed with iodinated contrast medium to simulate enhancing renal parenchyma of 100 and 250 HU and submerged within a 28-cm water bath. These combinations produced 48 individual phantom renal lesions of differing sizes, internal and parenchymal enhancement (12 cysts and 36 enhancing masses). DECT using 80 and 140 kVp was performed on a dual-source CT scanner. Commercial software created a color-encoded overlay indicating the location of iodine within the phantom. The lesions were individually graded as a cyst or enhancing mass by blinded, consensus interpretation of two genitourinary radiologists. Thirty-five of 36 enhancing masses and 10/12 cysts were correctly identified, equating to a sensitivity and specificity of 97% (95% CI 84-100%) and 83% (95% CI 51-97%), respectively. All lesions of 20- and 40-HU enhancement and 92% of 10-HU lesions were identified correctly. In a phantom model, the DECT iodine overlay technique is highly sensitive in detecting enhancing renal masses. Refinement of the technique remains necessary to improve specificity. If validated in patients, this may obviate the need for unenhanced acquisitions for renal mass characterization.


Subject(s)
Iodine , Kidney/pathology , Radiography, Dual-Energy Scanned Projection/methods , Tomography, X-Ray Computed/methods , Computer Simulation , Contrast Media/pharmacology , Humans , Image Processing, Computer-Assisted , Observer Variation , Phantoms, Imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Radiography, Dual-Energy Scanned Projection/instrumentation , Sensitivity and Specificity , Software , Tomography, X-Ray Computed/instrumentation
2.
Med Phys ; 34(12): 4726-37, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18196800

ABSTRACT

Quantitative evaluation of cardiac image data obtained using multidetector row computed tomography (CT) is compromised by partial scan reconstructions, which improve the temporal resolution but significantly increase image-to-image CT number variations for a fixed region of interest compared to full reconstruction images. The feasibility of a new approach to solve this problem is assessed. An anthropomorphic cardiac phantom and an anesthetized pig were scanned on a dual-source CT scanner using both full and partial scan acquisition modes under different conditions. Additional scans were conducted with the electrocardiogram (ECG) signal being in synchrony with the gantry rotation. In the animal study, a simple x-ray detector was used to generate a signal once per gantry rotation. This signal was then used to pace the pig's heart. Phantom studies demonstrated that partial scan artifacts are strongly dependent on the rotational symmetry of angular projections, which is determined by the object shape and composition and its position with respect to the isocenter. The degree of partial scan artifacts also depends on the location of the region of interest with respect to highly attenuating materials (bones, iodine, etc.) within the object. Single-source partial scan images (165 ms temporal resolution) were significantly less affected by partial scan artifacts compared to dual-source partial scan images (82 ms temporal resolution). When the ECG signal was in synchrony with the gantry rotation, the same cardiac phase always corresponded to the same positions of the x-ray tube(s) and, hence, the same scattering and beam hardening geometry. As a result, the range of image-to-image CT number variations for partial scan reconstruction images acquired in synchronized mode was decreased to that achieved using full reconstruction image data. The success of the new approach, which synchronizes the ECG signal with the position of the x-ray tube(s), was demonstrated both in the phantom and animal experiments.


Subject(s)
Artifacts , Heart/diagnostic imaging , Tomography, X-Ray Computed/instrumentation , Animals , Anisotropy , Electrocardiography/instrumentation , Heart/physiology , Heart Rate , Humans , Image Processing, Computer-Assisted , Iodine , Phantoms, Imaging , Water , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...