Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 263(Pt 2): 130335, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403215

ABSTRACT

The electrospinning technology has set off a tide and given rise to the attention of a widespread range of research territories, benefiting from the enhancement of nanofibers which made a spurt of progress. Nanofibers, continuously produced via electrospinning technology, have greater specific surface area and higher porosity and play a non-substitutable key role in many fields. Combined with the degradability and compatibility of the natural structure characteristics of polysaccharides, electrospun polysaccharide nanofiber membranes gradually infiltrate into the life field to help filter air contamination particles and water pollutants, treat wounds, keep food fresh, monitor electronic equipment, etc., thus improving the life quality. Compared with the evaluation of polysaccharide-based nanofiber membranes in a specific field, this paper comprehensively summarized the existing electrospinning technology and focused on the latest research progress about the application of polysaccharide-based nanofiber in different fields, represented by starch, chitosan, and cellulose. Finally, the benefits and defects of electrospun are discussed in brief, and the prospects for broadening the application of polysaccharide nanofiber membranes are presented for the glorious expectation dedicated to the progress of the eras.


Subject(s)
Chitosan , Nanofibers , Nanofibers/chemistry , Tissue Scaffolds/chemistry , Polysaccharides/chemistry , Starch
2.
Int J Biol Macromol ; 230: 123152, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36610566

ABSTRACT

The self-healing property based on metal-ligand physical coordination is particularly interesting in bio-hydrogel science due to its allowance for multiple local healing events to process. As the most abundant renewable green resource in nature, Gleditsia sinensis galactomannan has great potential as a starting material for functional materials. In this study, the biocompatible Gleditsia sinensis galactomannan and cellulose were firstly chemically modified and then taken as the main constituent for constructing the metal-ligand coordination through an enzyme-regulated strategy. The hydrogel could quickly gelatinize in the surrounding environment, corresponding to the violent exothermic phenomenon, and exhibit extraordinary self-healing behavior. The molecular dynamics simulation of the hydrogel confirmed the more stable coordinated configuration from Fe(III)-chelates than Fe(II)-chelates. The morphology, mechanical property, antibacterial, and cytotoxicity of the prepared hydrogel were also studied. Our results indicated that galactomannan hydrogel based on the metal-ligand networks could balance the kinetic stability and intrinsic healability through the enzyme-induced route, which provide a new perspective in the field of biomaterial applications.


Subject(s)
Gleditsia , Gleditsia/chemistry , Hydrogels/chemistry , Ferric Compounds , Ligands , Wound Healing , Anti-Bacterial Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...