Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(6): e27758, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38524600

ABSTRACT

Introduction: For experimental studies on sound transfer in the middle ear, it may be advantageous to perform the measurements without the inner ear. In this case, it is important to know the influence of inner ear impedance on the middle ear transfer function (METF). Previous studies provide contradictory results in this regard. With the current study, we investigate the influence of inner ear impedance in more detail and find possible reasons for deviations in the previous studies. Methods: 11 fresh frozen temporal bones were prepared in our study. The factors related to inner ear impedance, including round window membrane stiffness, cochleostomy, cochlea fluid and cochlea destruction were involved in the experimental design. After measuring in the intact specimen as a reference (step 1), the round window membrane was punctured (step 2), then completely removed (step 3). The cochleostomy was performed (step 4) before the cochlear fluid was carefully suctioned through scala tympani (step 5) and scala vestibuli (step 6). Finally, cochlea was destroyed by drilling (step 7). Translational and rotational movement of the stapes footplate were measured and calculated at each step. The results of the steps were compared to quantify the effect of inner ear impedance changing related to the process of cochlear drainage. Results: As the inner ear impedance decreases from step 1 to 7, the amplitudes of the METF curves at each frequency gradually increase in general. From step 6 on, the measured METF are significantly different with respect to the intact group at high frequencies above 3 kHz. The differences are frequency dependent. However, the significant decrement of rotational motion appears at the frequencies above 4.5 kHz from the step 5. Conclusion: This study confirms the influence of inner ear impedance on METF only at higher frequencies (≥3 kHz). The rotational motions are more sensitive to the drainage of fluid at the higher frequency. Study results that found no influence of cochlea impedance may be due to incomplete drainage of the cochlea.

2.
Ear Hear ; 44(1): 135-145, 2023.
Article in English | MEDLINE | ID: mdl-35913925

ABSTRACT

OBJECTIVES: The active middle ear implant, Vibrant Soundbridge (VSB), can be implanted with a variety of couplers. Hearing outcome after implantation has been investigated in both temporal bone (TB) experiments and patient studies, but the relationship between experimental and clinical data is still weak in the literature. Therefore, experimental data from TB experiments should be compared with patient data in a retrospective study, in which the floating mass transducer is used with couplers of the third generation. Actuator coupling structures included the long (LP coupler) and short (SP coupler) incus process, the stapes head (Clip coupler), and the round window membrane (RW soft coupler). METHODS: In the TB experiments, the sound transmission after vibroplasty on the above-mentioned actuator coupling structures was determined in 32 specimens by means of laser Doppler vibrometry on the stapes footplate. Data of 69 patients were analyzed. The main target audiometric parameters were the postoperative aided word recognition score (WRS) in the free field at 65 dB SPL (WRS 65 dB in %), the preoperative and postoperative pure-tone average (PTA4, including the frequencies 0.5, 1, 2, and 4 kHz) of the bone conduction hearing threshold (PTA4BC), the aided postoperative air conduction hearing threshold in the free field (PTA4FF) and the direct threshold (Vibrogram) at least 6 months postoperatively. The coupling efficiency of the actuator (Vibrogram-PTA4BC) as well as the effective hearing gain (PTA4FF-PTA4BC) was compared between the couplers. RESULTS: The analysis in the main speech range (0.5-4 kHz) indicated that in the TB experiments, the LP coupler tends to have the best coupling quality at low frequencies (500-1000 Hz). This was up to 15 dB above the worst actuator (RW soft coupler). However, the results missed the significance level ( p > 0.05). In the high frequencies (2000-4000 Hz), the Clip coupler showed the best coupling quality. This was 15 dB above the worst actuator (SP coupler). However, the results missed the significance level ( p > 0.05), too. The postoperative WRS at 65 dB SPL and the postoperative PTA4FF were independent of the actuator coupling structure. The PTA4BC was stable at 6 months postoperatively. For the PTA4 of the coupling efficiency, there were no significant differences between the actuator coupling structures (LP 8.9 dB ± 12.9; SP 9.5 ± 6.5 dB; Clip 5.2 ± 10.5 dB; RW 12.7 ± 11.0 dB). However, the tendential inferiority of the RW soft coupler with regard to transmission in the low-frequency range and the tendential superiority of the Clip coupler in the high-frequency range that have already been displayed experimentally could be confirmed in the clinical results. However, the clinical results missed the significance level, too ( p > 0.05). CONCLUSIONS: In vivo, there are no significant differences in the postoperative outcome stratified according to coupling the target structure. The differences known from the experimental setting were repressed by individual biasing factors. However, to ensure sufficient postoperative speech intelligibility, the frequency-specific transmission behavior of the couplers should be taken into account when setting the indication for VSB implantation.


Subject(s)
Hearing Loss, Mixed Conductive-Sensorineural , Ossicular Prosthesis , Humans , Retrospective Studies , Hearing , Temporal Bone/surgery , Treatment Outcome
3.
Hear Res ; 378: 92-100, 2019 07.
Article in English | MEDLINE | ID: mdl-30833144

ABSTRACT

Dynamic pressure at the tympanic membrane is transformed and subsequently transferred through the ossicular chain in the form of forces and moments. The forces are primarily transferred to the inner ear. They are transferred partly to the stapedial annular ligament which exhibits non-linear behavior and stiffens for larger static forces. In unventilated middle ears, static pressure is additionally transferred to the ossicles. The purpose of this study was to measure the force inside the ossicular chain as a physiological parameter. We determined the forces which act for dynamic sound transmission and for static load on the ossicular chain. The study is the first one which introduces these forces. The static forces have direct impact on clinically relevant questions for middle ear reconstructions with passive or active prosthesis. The dynamic forces have an impact on the development of middle ear sensors. Quasi-static forces in the incudostapedial joint (ISJ) gap were measured with two different sensor types in 17 temporal bones. The sensing elements, a single crystal piezo and a strain gauge element for validation, were bonded to a thin flexible titanium plate and encapsulated in a titanium housing to allow the acquisition of the applied force signal inside the ossicular chain. Dynamic forces were measured in 11 temporal bones with the piezo sensor. We measured a static force of 23 mN in the ISJ after sensor insertion. The mean force for dynamic physiological acoustic excitation from 250 Hz to 6 kHz was 26 µN/Pa. If the tympanic membrane is loaded with a static pressure, the static force in the ISJ increases up to 1 N for a maximum static pressure load scenario of 30 kPa.


Subject(s)
Ear Ossicles/physiology , Hearing , Joints/physiology , Tympanic Membrane/physiology , Equipment Design , Finite Element Analysis , Humans , Models, Theoretical , Motion , Pressure , Sound , Stress, Mechanical , Transducers, Pressure
4.
Hear Res ; 378: 157-165, 2019 07.
Article in English | MEDLINE | ID: mdl-30905594

ABSTRACT

We propose a novel system based on the Floating Mass Transducer (FMT) to be used as the active component of a fully implantable, Vibrant Soundbridge-like middle ear implant. The new system replaces the external microphone used in the currently available design with an implantable piezoelectric sensor that is inserted into the incudostapedial joint and picks up the vibrations transmitted to the long process of the incus. The FMT is coupled to the round window of the cochlea. We characterize the system by measuring the gain in intracochlear sound pressure using laser Doppler vibrometry at a surgically installed "third window" into the cochlea of six temporal bones. Closed-loop feedback oscillations limit the system's available output. We show that using an adaptive control algorithm, a mean functional gain of up to 40 dB is achieved, which is similar to Soundbridge functional gain. The concept matches the FMT's one-point fixation philosophy and offers several advantages over other designs, namely an easy and time-efficient surgery, reversibility of implantation, and natural hearing for the prospective patient.


Subject(s)
Cochlea/physiopathology , Hearing Aids , Hearing Loss/surgery , Hearing , Temporal Bone/surgery , Transducers, Pressure , Cadaver , Equipment Design , Hearing Loss/physiopathology , Humans , Laser-Doppler Flowmetry , Materials Testing , Motion , Pressure , Sound , Temporal Bone/physiopathology , Vibration
5.
Hear Res ; 340: 169-178, 2016 10.
Article in English | MEDLINE | ID: mdl-27041338

ABSTRACT

A fully implantable hearing aid is introduced which is a combined sensor-actuator-transducer designed for insertion into the incudostapedial joint gap (ISJ). The active elements each consist of a thin titanium membrane with an applied piezoelectric single crystal. The effectiveness of the operating principle is verified in a temporal bone study. We also take a closer look at the influence of an implantation-induced increase in middle ear stiffness on the transducer's output. An assembly of the transducer with 1 mm thickness is built and inserted into six temporal bones. At this thickness, the stiffness of the annular ligament is considerably increased, which leads to a loss in functional gain for the transducer. It is assumed that a thinner transducer would reduce this effect. In order to examine the performance for a prospective reduced pretension, we increased the gap size at the ISJ by 0.5 mm by removing the capitulum of the stapes in four temporal bones. The TM is stimulated with a broadband multisine sound signal in the audiological frequency range. The movement of the stapes footplate is measured with a laser Doppler vibrometer. The sensor signal is digitally processed and the amplified signal drives the actuator. The resulting feedback is minimized by an active noise control least mean square (LMS) algorithm which is implemented on a field programmable gate array. The dynamic range and the functional gain of the transducer in the temporal bones are determined. The results are compared to measurements from temporal bones without ISJ extension and to the results of Finite Elements Model (FE model) simulations. In the frequency range above 2 kHz a functional gain of 30 dB and more is achieved. This proposes the transducer as a potential treatment for high frequency hearing loss, e.g. for patients with noise-induced hearing loss. The transducer offers sufficient results for a comprehensive application. Adaptations in the transducer design or surgical approach are necessary to cope with ligament stiffening issues. These cause insufficient performance for low frequencies under 1 kHz.


Subject(s)
Cochlear Implants , Ear Ossicles/physiology , Hearing Loss, Noise-Induced/therapy , Ossicular Prosthesis , Temporal Bone/physiology , Adolescent , Adult , Aged , Aged, 80 and over , Algorithms , Cadaver , Calibration , Computer Simulation , Ear, Middle/physiology , Finite Element Analysis , Humans , Incus/physiology , Malleus/physiology , Middle Aged , Pressure , Transducers , Young Adult
6.
Sensors (Basel) ; 14(8): 14356-74, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-25106020

ABSTRACT

Implantable assembly components that are biocompatible and highly miniaturized are an important objective for hearing aid development. We introduce a mechanical transducer, which could be suitable as part of a prospective fully-implantable hearing aid. The transducer comprises a sensor and an actuator unit in one housing, located in the joint gap between the middle ear ossicles, the incus and stapes. The setup offers the advantage of a minimally invasive and reversible surgical solution. However, feedback between actuator and sensor due to mechanical coupling limits the available stable gain. We show that the system can be stabilized by digital control algorithms. The transducer is tested both in a finite elements method simulation of the middle ear and a physical model of a human middle ear. First, we characterize the sensor and actuator elements separately. Then, the maximum stable gain (MSG) of the whole transducer is experimentally determined in the middle ear model. With digital feedback control (using a least mean squares algorithm) in place, the total signal gain is greater than 30 dB for frequencies of 1 kHz and above. This shows the potential of the transducer as a high frequency hearing aid.


Subject(s)
Acoustic Stimulation/instrumentation , Amplifiers, Electronic , Cochlear Implants , Hearing Aids , Prosthesis Design/instrumentation , Ear Ossicles/physiology , Finite Element Analysis , Humans , Physical Phenomena , Prospective Studies , Transducers
SELECTION OF CITATIONS
SEARCH DETAIL
...