Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 14354, 2018 09 25.
Article in English | MEDLINE | ID: mdl-30254298

ABSTRACT

Human T-cell lymphotropic virus type-1 (HTLV-1) is the etiological agent of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The endothelial breakdown and migration of leukocytes, including monocytes, to the spinal cord are involved in HAM/TSP development. Monocytes from HTLV-1-infected individuals exhibit important functional differences when compared to cells from uninfected donors. Using proteomic shot gun strategy, performed by nanoACQUITY-UPLC system, we analyzed monocytes isolated from peripheral blood of asymptomatic carriers (AC), HAM/TSP and uninfected individuals. 534 proteins were identified among which 376 were quantified by ExpressionE software. Our study revealed a panel of changes in protein expression linked to HTLV-1 infection. Upregulation of heat shock proteins and downregulation of canonical histone expression were observed in monocytes from HTLV-1-infected patients. Moreover, expression of cytoskeleton proteins was increased in monocytes from HTLV-1-infected patients, mainly in those from HAM/TSP, which was confirmed by flow cytometry and fluorescence microscopy. Importantly, functional assays demonstrated that monocytes from HAM/TSP patients present higher ability for adhesion and transmigration thought endothelium than those from AC and uninfected individuals. The major changes on monocyte protein profile were detected in HAM/TSP patients, suggesting that these alterations exert a relevant role in the establishment of HAM/TSP.


Subject(s)
HTLV-I Infections/blood , HTLV-I Infections/metabolism , Human T-lymphotropic virus 1/physiology , Monocytes/metabolism , Paraparesis, Tropical Spastic/metabolism , Paraparesis, Tropical Spastic/virology , Proteomics , Adult , Cell Adhesion , Cell Movement , Cytoskeleton/metabolism , Female , Histones/metabolism , Humans , Male , Monocytes/cytology , Paraparesis, Tropical Spastic/blood , Up-Regulation , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...