Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3606, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697975

ABSTRACT

Amyotrophic Lateral Sclerosis (ALS), like many other neurodegenerative diseases, is highly heritable, but with only a small fraction of cases explained by monogenic disease alleles. To better understand sporadic ALS, we report epigenomic profiles, as measured by ATAC-seq, of motor neuron cultures derived from a diverse group of 380 ALS patients and 80 healthy controls. We find that chromatin accessibility is heavily influenced by sex, the iPSC cell type of origin, ancestry, and the inherent variance arising from sequencing. Once these covariates are corrected for, we are able to identify ALS-specific signals in the data. Additionally, we find that the ATAC-seq data is able to predict ALS disease progression rates with similar accuracy to methods based on biomarkers and clinical status. These results suggest that iPSC-derived motor neurons recapitulate important disease-relevant epigenomic changes.


Subject(s)
Amyotrophic Lateral Sclerosis , Induced Pluripotent Stem Cells , Motor Neurons , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/metabolism , Induced Pluripotent Stem Cells/metabolism , Motor Neurons/metabolism , Motor Neurons/pathology , Male , Female , Middle Aged , Case-Control Studies , Chromatin/metabolism , Chromatin/genetics , Aged , Epigenomics/methods , Chromatin Immunoprecipitation Sequencing/methods , Disease Progression , Epigenesis, Genetic
2.
IEEE J Biomed Health Inform ; 24(3): 878-884, 2020 03.
Article in English | MEDLINE | ID: mdl-31199276

ABSTRACT

Constructing statistical models using personal sensor data could allow for tracking health status over time, thereby enabling the possibility of early intervention. The goal of this study was to use machine learning algorithms to classify patient-reported outcomes (PROs) using activity tracker data in a cohort of patients with stable ischemic heart disease (SIHD). A population of 182 patients with SIHD were monitored over a period of 12 weeks. Each subject received a Fitbit Charge 2 device to record daily activity data, and each subject completed eight Patient-Reported Outcomes Measurement Information Systems short form at the end of each week as a self-assessment of their health status. Two models were built to classify PRO scores using activity tracker data. The first model treated each week independently, whereas the second used a hidden Markov model (HMM) to take advantage of correlations between successive weeks. Retrospective analysis compared the classification accuracy of the two models and the importance of each feature. In the independent model, a random forest classifier achieved a mean area under curve (AUC) of 0.76 for classifying the physical function PRO. The HMM model achieved significantly better AUCs for all PROs (p < 0.05) other than Fatigue and Sleep Disturbance, with a highest mean AUC of 0.79 for the physical function-short form 10a. Our study demonstrates the ability of activity tracker data to classify health status over time. These results suggest that patient outcomes can be monitored in real time using activity trackers.


Subject(s)
Fitness Trackers , Health Status , Heart Diseases , Machine Learning , Self Report/classification , Algorithms , Cohort Studies , Heart Diseases/diagnosis , Heart Diseases/physiopathology , Heart Diseases/therapy , Humans , Monitoring, Ambulatory , Telemedicine
SELECTION OF CITATIONS
SEARCH DETAIL
...