Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-15323110

ABSTRACT

In order to simulate and optimize the microwave sintering of a silicon nitride and tungsten carbide/cobalt toolbits process, a microwave sintering process model has been built. A cylindrical sintering furnace was used containing a heat insulating layer, a susceptor layer, and an alumina tube containing the green toolbit parts between parallel, electrically conductive, graphite plates. Dielectric and absorption properties of the silicon nitride green parts, the tungsten carbide/cobalt green parts, and an oxidizable susceptor material were measured using perturbation and waveguide transmission methods. Microwave absorption data were measured over a temperature range from 20 degrees C to 800 degrees C. These data were then used in the microwave process model which assumed plane wave propagation along the radial direction and included the microwave reflection at each interface between the materials and the microwave absorption in the bulk materials. Heat transfer between the components inside the cylindrical sintering furnace was also included in the model. The simulated heating process data for both silicon nitride and tungsten carbide/cobalt samples closely follow the experimental data. By varying the physical parameters of the sintering furnace model, such as the thickness of the susceptor layer, the thickness of the allumina tube wall, the sample load volume and the graphite plate mass, the model data predicts their effects which are helpful in optimizing those parameters in the industrial sintering process.


Subject(s)
Ceramics/chemistry , Ceramics/radiation effects , Heating/methods , Hot Temperature , Metallurgy/methods , Microwaves , Models, Chemical , Computer Simulation , Metallurgy/instrumentation
2.
Am J Orthod Dentofacial Orthop ; 118(6): 662-74, 2000 Dec.
Article in English | MEDLINE | ID: mdl-11113802

ABSTRACT

Frictional resistance at the bracket-archwire interface has been demonstrated to impede tooth movement when sliding mechanics are used. Thus, the coefficients of friction of titanium and stainless steel brackets used in conjunction with stainless and ion-implanted beta-titanium archwires were investigated using a single contact interface between the brackets and archwires. The wear patterns between the brackets and the.016- in flat archwire surfaces were also examined using scanning electron microscopy and energy dispersive x-ray analysis. Stainless steel brackets tested with. 016-in flat stainless steel wire surfaces recorded the lowest coefficient of static friction mean (0.289), whereas titanium brackets paired with.016-in flat ion-implanted beta-titanium wire surfaces produced the highest mean (0.767). Stainless steel brackets had significantly (P <.05) lower coefficients of friction than titanium brackets for all wires except.020-in round stainless steel wires. Ion-implanted beta-titanium wires generally had significantly larger coefficients of friction than stainless steel wires. The increased friction of the titanium and ion-implanted beta-titanium alloys is also reflected in the severity of their wear patterns. An inverse relationship between friction and archwire surface dimension was generally found for ion-implanted beta-titanium wires. Round stainless steel wires demonstrated lower coefficients of kinetic friction than the flat stainless steel wire surfaces.


Subject(s)
Orthodontic Appliance Design , Orthodontic Brackets , Orthodontic Wires , Analysis of Variance , Chi-Square Distribution , Dental Stress Analysis , Electron Probe Microanalysis , Friction , Materials Testing , Microscopy, Electron, Scanning , Stainless Steel , Surface Properties , Titanium
SELECTION OF CITATIONS
SEARCH DETAIL
...